Loading…

Coconut oil ameliorates behavioral and biochemical alterations induced by D-GAL/AlCl3 in rats

Alzheimer's disease (AD) is a chronic, progressive neurodegenerative condition marked by cognitive impairment. Although coconut oil has been shown to be potentially beneficial in reducing AD-related cognitive deficits, information on its mechanism of action is limited. Thus, we investigated the...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 2024-01, Vol.1823, p.148704-148704, Article 148704
Main Authors: Belviranlı, Muaz, Okudan, Nilsel
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer's disease (AD) is a chronic, progressive neurodegenerative condition marked by cognitive impairment. Although coconut oil has been shown to be potentially beneficial in reducing AD-related cognitive deficits, information on its mechanism of action is limited. Thus, we investigated the effects of coconut oil on spatial cognitive ability and non-cognitive functions in a rat model of AD induced by G-galactose (D-GAL) and aluminum chloride (AlCl3), and examined the changes in synaptic transmission, cholinergic activity, neurotrophic factors and oxidative stress in this process. The AD model was established by administering D-GAL and AlCl3 for 90 days, while also supplementing with coconut oil during this time. Cognitive and non-cognitive abilities of the rats were evaluated at the end of the 90-day supplementation period. In addition, biochemical markers related to the pathogenesis of the AD were measures in the hippocampus tissue. Exposure to D-GAL/AlCl3 resulted in a reduction in locomotor activity, an elevation in anxiety-like behavior, and an impairment of spatial learning and memory (P < 0.05). The aforementioned behavioral disturbances were observed to coincide with increased oxidative stress and cholinergic impairment, as well as reduced synaptic transmission and levels of neurotrophins in the hippocampus (P < 0.05). Interestingly, treatment with coconut oil attenuated all the neuropathological changes mentioned above (P < 0.05). These findings suggest that coconut oil shows protective effects against cognitive and non-cognitive impairment, AD pathology markers, oxidative stress, synaptic transmission, and cholinergic function in a D-GAL/AlCl3-induced AD rat model.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2023.148704