Loading…
Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors
Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which th...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-04, Vol.20 (17), p.e2308739-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963 |
container_end_page | n/a |
container_issue | 17 |
container_start_page | e2308739 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Mao, Xiaoyan Ding, Xinqi Wang, Qi Sun, Xiping Qin, Lei Huang, Fei Wen, Luhong Xiang, Xingwei |
description | Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium‐oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self‐assembly of flexible nanoribbons into pumpkin‐like microspheres. The confined effect between water‐flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self‐assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g−1) accompanied with heavy metal removal (1331.67 mg g−1) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields.
Oriented construction of nanocrystals into MOFs anisotropic superstructure is achieved by molecular self‐assembly strategy. Confined interaction between flexible building blocks and hydrogen networks of superstructure realized mismatch transformation of homogeneous hydrogels, possessing superior water adsorption ability (119.73 g g−1) and strong mechanical strength (Young's modulus of 0.3 GPa). |
doi_str_mv | 10.1002/smll.202308739 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898954509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045909404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoiVw5YgsceGSMP7YDx9LRUiltDkEztaud5a68q6Dvdt2pR74CfxGfgluU1KJC6eZkZ55ZqSXkLcMFgyAf4ydcwsOXEBZCPWMHLOciXlecvX80DM4Iq9ivAIQjMviJTkSJWQy5-qY3G2CxX7Ahm7Rtb9__qpixK52E_UtXTq8tbVDer5ZRnpR9d6EKQ6Vi9T2g6cnvY1-CH5nDd2OOwxxCKMZxoCR3tjhkq58579jj36MdDU1IQ1p9xNeVtfWh_iavGiTDN881hn5tvz89XQ1X2--nJ2erOdG8FLNa6ZqKZAXBpTgUtRCmKJQed20LVccmhKUkpgZAXnBecUywUqUrCq5NEblYkY-7L274H-MGAfd2WjQuerhNZ2OlCqTWdLPyPt_0Cs_hj59pwXITIGSIBO12FMm-BgDtnoXbFeFSTPQ97no-1z0IZe08O5RO9YdNgf8bxAJUHvgxjqc_qPT2_P1-kn-B9ycnAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045909404</pqid></control><display><type>article</type><title>Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mao, Xiaoyan ; Ding, Xinqi ; Wang, Qi ; Sun, Xiping ; Qin, Lei ; Huang, Fei ; Wen, Luhong ; Xiang, Xingwei</creator><creatorcontrib>Mao, Xiaoyan ; Ding, Xinqi ; Wang, Qi ; Sun, Xiping ; Qin, Lei ; Huang, Fei ; Wen, Luhong ; Xiang, Xingwei</creatorcontrib><description>Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium‐oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self‐assembly of flexible nanoribbons into pumpkin‐like microspheres. The confined effect between water‐flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self‐assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g−1) accompanied with heavy metal removal (1331.67 mg g−1) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields.
Oriented construction of nanocrystals into MOFs anisotropic superstructure is achieved by molecular self‐assembly strategy. Confined interaction between flexible building blocks and hydrogen networks of superstructure realized mismatch transformation of homogeneous hydrogels, possessing superior water adsorption ability (119.73 g g−1) and strong mechanical strength (Young's modulus of 0.3 GPa).</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202308739</identifier><identifier>PMID: 38054629</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anisotropic superstructures ; Crystallization ; Elastic properties ; flexible MOFs ; Glutamic acid ; Heavy metals ; homogeneous hydrogels ; Hydrogels ; Metal-organic frameworks ; Microspheres ; mismatch transformation ; Modulus of elasticity ; molecular self‐assembly ; Nanoribbons ; Self-assembly ; Superstructures ; Zirconium</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (17), p.e2308739-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963</cites><orcidid>0000-0001-6842-4924 ; 0000-0002-0018-7739 ; 0000-0002-9313-9639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38054629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Xiaoyan</creatorcontrib><creatorcontrib>Ding, Xinqi</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Sun, Xiping</creatorcontrib><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Wen, Luhong</creatorcontrib><creatorcontrib>Xiang, Xingwei</creatorcontrib><title>Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium‐oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self‐assembly of flexible nanoribbons into pumpkin‐like microspheres. The confined effect between water‐flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self‐assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g−1) accompanied with heavy metal removal (1331.67 mg g−1) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields.
Oriented construction of nanocrystals into MOFs anisotropic superstructure is achieved by molecular self‐assembly strategy. Confined interaction between flexible building blocks and hydrogen networks of superstructure realized mismatch transformation of homogeneous hydrogels, possessing superior water adsorption ability (119.73 g g−1) and strong mechanical strength (Young's modulus of 0.3 GPa).</description><subject>anisotropic superstructures</subject><subject>Crystallization</subject><subject>Elastic properties</subject><subject>flexible MOFs</subject><subject>Glutamic acid</subject><subject>Heavy metals</subject><subject>homogeneous hydrogels</subject><subject>Hydrogels</subject><subject>Metal-organic frameworks</subject><subject>Microspheres</subject><subject>mismatch transformation</subject><subject>Modulus of elasticity</subject><subject>molecular self‐assembly</subject><subject>Nanoribbons</subject><subject>Self-assembly</subject><subject>Superstructures</subject><subject>Zirconium</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoiVw5YgsceGSMP7YDx9LRUiltDkEztaud5a68q6Dvdt2pR74CfxGfgluU1KJC6eZkZ55ZqSXkLcMFgyAf4ydcwsOXEBZCPWMHLOciXlecvX80DM4Iq9ivAIQjMviJTkSJWQy5-qY3G2CxX7Ahm7Rtb9__qpixK52E_UtXTq8tbVDer5ZRnpR9d6EKQ6Vi9T2g6cnvY1-CH5nDd2OOwxxCKMZxoCR3tjhkq58579jj36MdDU1IQ1p9xNeVtfWh_iavGiTDN881hn5tvz89XQ1X2--nJ2erOdG8FLNa6ZqKZAXBpTgUtRCmKJQed20LVccmhKUkpgZAXnBecUywUqUrCq5NEblYkY-7L274H-MGAfd2WjQuerhNZ2OlCqTWdLPyPt_0Cs_hj59pwXITIGSIBO12FMm-BgDtnoXbFeFSTPQ97no-1z0IZe08O5RO9YdNgf8bxAJUHvgxjqc_qPT2_P1-kn-B9ycnAY</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Mao, Xiaoyan</creator><creator>Ding, Xinqi</creator><creator>Wang, Qi</creator><creator>Sun, Xiping</creator><creator>Qin, Lei</creator><creator>Huang, Fei</creator><creator>Wen, Luhong</creator><creator>Xiang, Xingwei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6842-4924</orcidid><orcidid>https://orcid.org/0000-0002-0018-7739</orcidid><orcidid>https://orcid.org/0000-0002-9313-9639</orcidid></search><sort><creationdate>20240401</creationdate><title>Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors</title><author>Mao, Xiaoyan ; Ding, Xinqi ; Wang, Qi ; Sun, Xiping ; Qin, Lei ; Huang, Fei ; Wen, Luhong ; Xiang, Xingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anisotropic superstructures</topic><topic>Crystallization</topic><topic>Elastic properties</topic><topic>flexible MOFs</topic><topic>Glutamic acid</topic><topic>Heavy metals</topic><topic>homogeneous hydrogels</topic><topic>Hydrogels</topic><topic>Metal-organic frameworks</topic><topic>Microspheres</topic><topic>mismatch transformation</topic><topic>Modulus of elasticity</topic><topic>molecular self‐assembly</topic><topic>Nanoribbons</topic><topic>Self-assembly</topic><topic>Superstructures</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Xiaoyan</creatorcontrib><creatorcontrib>Ding, Xinqi</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Sun, Xiping</creatorcontrib><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Wen, Luhong</creatorcontrib><creatorcontrib>Xiang, Xingwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Xiaoyan</au><au>Ding, Xinqi</au><au>Wang, Qi</au><au>Sun, Xiping</au><au>Qin, Lei</au><au>Huang, Fei</au><au>Wen, Luhong</au><au>Xiang, Xingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>20</volume><issue>17</issue><spage>e2308739</spage><epage>n/a</epage><pages>e2308739-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium‐oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self‐assembly of flexible nanoribbons into pumpkin‐like microspheres. The confined effect between water‐flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self‐assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g−1) accompanied with heavy metal removal (1331.67 mg g−1) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields.
Oriented construction of nanocrystals into MOFs anisotropic superstructure is achieved by molecular self‐assembly strategy. Confined interaction between flexible building blocks and hydrogen networks of superstructure realized mismatch transformation of homogeneous hydrogels, possessing superior water adsorption ability (119.73 g g−1) and strong mechanical strength (Young's modulus of 0.3 GPa).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38054629</pmid><doi>10.1002/smll.202308739</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6842-4924</orcidid><orcidid>https://orcid.org/0000-0002-0018-7739</orcidid><orcidid>https://orcid.org/0000-0002-9313-9639</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (17), p.e2308739-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2898954509 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | anisotropic superstructures Crystallization Elastic properties flexible MOFs Glutamic acid Heavy metals homogeneous hydrogels Hydrogels Metal-organic frameworks Microspheres mismatch transformation Modulus of elasticity molecular self‐assembly Nanoribbons Self-assembly Superstructures Zirconium |
title | Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oriented%20Self%E2%80%90assembly%20of%20Flexible%20MOFs%20Nanocrystals%20into%20Anisotropic%20Superstructures%20with%20Homogeneous%20Hydrogels%20Behaviors&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Mao,%20Xiaoyan&rft.date=2024-04-01&rft.volume=20&rft.issue=17&rft.spage=e2308739&rft.epage=n/a&rft.pages=e2308739-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202308739&rft_dat=%3Cproquest_cross%3E3045909404%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3045909404&rft_id=info:pmid/38054629&rfr_iscdi=true |