Loading…

Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors

Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which th...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-04, Vol.20 (17), p.e2308739-n/a
Main Authors: Mao, Xiaoyan, Ding, Xinqi, Wang, Qi, Sun, Xiping, Qin, Lei, Huang, Fei, Wen, Luhong, Xiang, Xingwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963
container_end_page n/a
container_issue 17
container_start_page e2308739
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Mao, Xiaoyan
Ding, Xinqi
Wang, Qi
Sun, Xiping
Qin, Lei
Huang, Fei
Wen, Luhong
Xiang, Xingwei
description Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium‐oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self‐assembly of flexible nanoribbons into pumpkin‐like microspheres. The confined effect between water‐flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self‐assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g−1) accompanied with heavy metal removal (1331.67 mg g−1) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields. Oriented construction of nanocrystals into MOFs anisotropic superstructure is achieved by molecular self‐assembly strategy. Confined interaction between flexible building blocks and hydrogen networks of superstructure realized mismatch transformation of homogeneous hydrogels, possessing superior water adsorption ability (119.73 g g−1) and strong mechanical strength (Young's modulus of 0.3 GPa).
doi_str_mv 10.1002/smll.202308739
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2898954509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045909404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoiVw5YgsceGSMP7YDx9LRUiltDkEztaud5a68q6Dvdt2pR74CfxGfgluU1KJC6eZkZ55ZqSXkLcMFgyAf4ydcwsOXEBZCPWMHLOciXlecvX80DM4Iq9ivAIQjMviJTkSJWQy5-qY3G2CxX7Ahm7Rtb9__qpixK52E_UtXTq8tbVDer5ZRnpR9d6EKQ6Vi9T2g6cnvY1-CH5nDd2OOwxxCKMZxoCR3tjhkq58579jj36MdDU1IQ1p9xNeVtfWh_iavGiTDN881hn5tvz89XQ1X2--nJ2erOdG8FLNa6ZqKZAXBpTgUtRCmKJQed20LVccmhKUkpgZAXnBecUywUqUrCq5NEblYkY-7L274H-MGAfd2WjQuerhNZ2OlCqTWdLPyPt_0Cs_hj59pwXITIGSIBO12FMm-BgDtnoXbFeFSTPQ97no-1z0IZe08O5RO9YdNgf8bxAJUHvgxjqc_qPT2_P1-kn-B9ycnAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045909404</pqid></control><display><type>article</type><title>Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mao, Xiaoyan ; Ding, Xinqi ; Wang, Qi ; Sun, Xiping ; Qin, Lei ; Huang, Fei ; Wen, Luhong ; Xiang, Xingwei</creator><creatorcontrib>Mao, Xiaoyan ; Ding, Xinqi ; Wang, Qi ; Sun, Xiping ; Qin, Lei ; Huang, Fei ; Wen, Luhong ; Xiang, Xingwei</creatorcontrib><description>Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium‐oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self‐assembly of flexible nanoribbons into pumpkin‐like microspheres. The confined effect between water‐flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self‐assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g−1) accompanied with heavy metal removal (1331.67 mg g−1) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields. Oriented construction of nanocrystals into MOFs anisotropic superstructure is achieved by molecular self‐assembly strategy. Confined interaction between flexible building blocks and hydrogen networks of superstructure realized mismatch transformation of homogeneous hydrogels, possessing superior water adsorption ability (119.73 g g−1) and strong mechanical strength (Young's modulus of 0.3 GPa).</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202308739</identifier><identifier>PMID: 38054629</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anisotropic superstructures ; Crystallization ; Elastic properties ; flexible MOFs ; Glutamic acid ; Heavy metals ; homogeneous hydrogels ; Hydrogels ; Metal-organic frameworks ; Microspheres ; mismatch transformation ; Modulus of elasticity ; molecular self‐assembly ; Nanoribbons ; Self-assembly ; Superstructures ; Zirconium</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (17), p.e2308739-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963</cites><orcidid>0000-0001-6842-4924 ; 0000-0002-0018-7739 ; 0000-0002-9313-9639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38054629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Xiaoyan</creatorcontrib><creatorcontrib>Ding, Xinqi</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Sun, Xiping</creatorcontrib><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Wen, Luhong</creatorcontrib><creatorcontrib>Xiang, Xingwei</creatorcontrib><title>Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium‐oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self‐assembly of flexible nanoribbons into pumpkin‐like microspheres. The confined effect between water‐flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self‐assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g−1) accompanied with heavy metal removal (1331.67 mg g−1) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields. Oriented construction of nanocrystals into MOFs anisotropic superstructure is achieved by molecular self‐assembly strategy. Confined interaction between flexible building blocks and hydrogen networks of superstructure realized mismatch transformation of homogeneous hydrogels, possessing superior water adsorption ability (119.73 g g−1) and strong mechanical strength (Young's modulus of 0.3 GPa).</description><subject>anisotropic superstructures</subject><subject>Crystallization</subject><subject>Elastic properties</subject><subject>flexible MOFs</subject><subject>Glutamic acid</subject><subject>Heavy metals</subject><subject>homogeneous hydrogels</subject><subject>Hydrogels</subject><subject>Metal-organic frameworks</subject><subject>Microspheres</subject><subject>mismatch transformation</subject><subject>Modulus of elasticity</subject><subject>molecular self‐assembly</subject><subject>Nanoribbons</subject><subject>Self-assembly</subject><subject>Superstructures</subject><subject>Zirconium</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoiVw5YgsceGSMP7YDx9LRUiltDkEztaud5a68q6Dvdt2pR74CfxGfgluU1KJC6eZkZ55ZqSXkLcMFgyAf4ydcwsOXEBZCPWMHLOciXlecvX80DM4Iq9ivAIQjMviJTkSJWQy5-qY3G2CxX7Ahm7Rtb9__qpixK52E_UtXTq8tbVDer5ZRnpR9d6EKQ6Vi9T2g6cnvY1-CH5nDd2OOwxxCKMZxoCR3tjhkq58579jj36MdDU1IQ1p9xNeVtfWh_iavGiTDN881hn5tvz89XQ1X2--nJ2erOdG8FLNa6ZqKZAXBpTgUtRCmKJQed20LVccmhKUkpgZAXnBecUywUqUrCq5NEblYkY-7L274H-MGAfd2WjQuerhNZ2OlCqTWdLPyPt_0Cs_hj59pwXITIGSIBO12FMm-BgDtnoXbFeFSTPQ97no-1z0IZe08O5RO9YdNgf8bxAJUHvgxjqc_qPT2_P1-kn-B9ycnAY</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Mao, Xiaoyan</creator><creator>Ding, Xinqi</creator><creator>Wang, Qi</creator><creator>Sun, Xiping</creator><creator>Qin, Lei</creator><creator>Huang, Fei</creator><creator>Wen, Luhong</creator><creator>Xiang, Xingwei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6842-4924</orcidid><orcidid>https://orcid.org/0000-0002-0018-7739</orcidid><orcidid>https://orcid.org/0000-0002-9313-9639</orcidid></search><sort><creationdate>20240401</creationdate><title>Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors</title><author>Mao, Xiaoyan ; Ding, Xinqi ; Wang, Qi ; Sun, Xiping ; Qin, Lei ; Huang, Fei ; Wen, Luhong ; Xiang, Xingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anisotropic superstructures</topic><topic>Crystallization</topic><topic>Elastic properties</topic><topic>flexible MOFs</topic><topic>Glutamic acid</topic><topic>Heavy metals</topic><topic>homogeneous hydrogels</topic><topic>Hydrogels</topic><topic>Metal-organic frameworks</topic><topic>Microspheres</topic><topic>mismatch transformation</topic><topic>Modulus of elasticity</topic><topic>molecular self‐assembly</topic><topic>Nanoribbons</topic><topic>Self-assembly</topic><topic>Superstructures</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Xiaoyan</creatorcontrib><creatorcontrib>Ding, Xinqi</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Sun, Xiping</creatorcontrib><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Wen, Luhong</creatorcontrib><creatorcontrib>Xiang, Xingwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Xiaoyan</au><au>Ding, Xinqi</au><au>Wang, Qi</au><au>Sun, Xiping</au><au>Qin, Lei</au><au>Huang, Fei</au><au>Wen, Luhong</au><au>Xiang, Xingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>20</volume><issue>17</issue><spage>e2308739</spage><epage>n/a</epage><pages>e2308739-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Building of metal–organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super‐assembly strategy to construct micro‐scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium‐oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self‐assembly of flexible nanoribbons into pumpkin‐like microspheres. The confined effect between water‐flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self‐assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g−1) accompanied with heavy metal removal (1331.67 mg g−1) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields. Oriented construction of nanocrystals into MOFs anisotropic superstructure is achieved by molecular self‐assembly strategy. Confined interaction between flexible building blocks and hydrogen networks of superstructure realized mismatch transformation of homogeneous hydrogels, possessing superior water adsorption ability (119.73 g g−1) and strong mechanical strength (Young's modulus of 0.3 GPa).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38054629</pmid><doi>10.1002/smll.202308739</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6842-4924</orcidid><orcidid>https://orcid.org/0000-0002-0018-7739</orcidid><orcidid>https://orcid.org/0000-0002-9313-9639</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (17), p.e2308739-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2898954509
source Wiley-Blackwell Read & Publish Collection
subjects anisotropic superstructures
Crystallization
Elastic properties
flexible MOFs
Glutamic acid
Heavy metals
homogeneous hydrogels
Hydrogels
Metal-organic frameworks
Microspheres
mismatch transformation
Modulus of elasticity
molecular self‐assembly
Nanoribbons
Self-assembly
Superstructures
Zirconium
title Oriented Self‐assembly of Flexible MOFs Nanocrystals into Anisotropic Superstructures with Homogeneous Hydrogels Behaviors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oriented%20Self%E2%80%90assembly%20of%20Flexible%20MOFs%20Nanocrystals%20into%20Anisotropic%20Superstructures%20with%20Homogeneous%20Hydrogels%20Behaviors&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Mao,%20Xiaoyan&rft.date=2024-04-01&rft.volume=20&rft.issue=17&rft.spage=e2308739&rft.epage=n/a&rft.pages=e2308739-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202308739&rft_dat=%3Cproquest_cross%3E3045909404%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3289-b19b43e27c093243b33c7796bdff2920d80994e5c306722a15318e41a824cc963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3045909404&rft_id=info:pmid/38054629&rfr_iscdi=true