Loading…

The Dynamical Biomarkers in Functional Connectivity of Autism Spectrum Disorder Based on Dynamic Graph Embedding

Autism spectrum disorder (ASD) is a neurological and developmental disorder and its early diagnosis is a challenging task. The dynamic brain network (DBN) offers a wealth of information for the diagnosis and treatment of ASD. Mining the spatio-temporal characteristics of DBN is critical for finding...

Full description

Saved in:
Bibliographic Details
Published in:Interdisciplinary sciences : computational life sciences 2024-03, Vol.16 (1), p.141-159
Main Authors: Liu, Yanting, Wang, Hao, Ding, Yanrui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-d26f419ae0803a680b452b62b6cfb362e9e7dd9eff2debf6fa719204a1fe8f5b3
cites cdi_FETCH-LOGICAL-c375t-d26f419ae0803a680b452b62b6cfb362e9e7dd9eff2debf6fa719204a1fe8f5b3
container_end_page 159
container_issue 1
container_start_page 141
container_title Interdisciplinary sciences : computational life sciences
container_volume 16
creator Liu, Yanting
Wang, Hao
Ding, Yanrui
description Autism spectrum disorder (ASD) is a neurological and developmental disorder and its early diagnosis is a challenging task. The dynamic brain network (DBN) offers a wealth of information for the diagnosis and treatment of ASD. Mining the spatio-temporal characteristics of DBN is critical for finding dynamic communication across brain regions and, ultimately, identifying the ASD diagnostic biomarker. We proposed the dgEmbed-KNN and the Aggregation-SVM diagnostic models, which use the spatio-temporal information from DBN and interactive information among brain regions represented by dynamic graph embedding. The classification accuracies show that dgEmbed-KNN model performs slightly better than traditional machine learning and deep learning methods, while the Aggregation-SVM model has a very good capacity to diagnose ASD using aggregation brain network connections as features. We discovered over- and under-connections in ASD at the level of dynamic connections, involving brain regions of the postcentral gyrus, the insula, the cerebellum, the caudate nucleus, and the temporal pole. We also found abnormal dynamic interactions associated with ASD within/between the functional subnetworks, including default mode network, visual network, auditory network and saliency network. These can provide potential DBN biomarkers for ASD identification. Graphical Abstract
doi_str_mv 10.1007/s12539-023-00592-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899370359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929956905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d26f419ae0803a680b452b62b6cfb362e9e7dd9eff2debf6fa719204a1fe8f5b3</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Fr9Ay4MiRs3Uw8wMMOyvf0yaeLCuibMcGipd2CEGZv770Vvq4kLExI-znNeAg8hbxkcM4DuY2FcCt0AFw2A1Lx5eEYOWa-6hrWKP69rzUTDO8kOyKtS7gFU2wt4SQ5EDwpYxw7JfHOH9GwX7RRGu6WnIU02f8NcaIj0Yo3jElKshU2KEevmR1h2NHl6si6hTPTLXA_zOtGzUFJ2mOmpLehoik-h9DLb-Y6eTwM6F-Lta_LC223BN4_zEfl6cX6zuWquP19-2pxcN6Po5NI4rnzLtEXoQVjVw9BKPqg6Rj8IxVFj55xG77nDwStvO6Y5tJZ57L0cxBH5sM-dc_q-YlnMFMqI262NmNZieK-16EBIXdH3_6D3ac311ZXSXGupNMhK8T015lRKRm_mHOpn7QwD88uH2fsw1Yf57cM81KZ3j9HrMKH70_IkoAJiD5RaireY_979n9ifHW6XUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929956905</pqid></control><display><type>article</type><title>The Dynamical Biomarkers in Functional Connectivity of Autism Spectrum Disorder Based on Dynamic Graph Embedding</title><source>Springer Nature</source><creator>Liu, Yanting ; Wang, Hao ; Ding, Yanrui</creator><creatorcontrib>Liu, Yanting ; Wang, Hao ; Ding, Yanrui</creatorcontrib><description>Autism spectrum disorder (ASD) is a neurological and developmental disorder and its early diagnosis is a challenging task. The dynamic brain network (DBN) offers a wealth of information for the diagnosis and treatment of ASD. Mining the spatio-temporal characteristics of DBN is critical for finding dynamic communication across brain regions and, ultimately, identifying the ASD diagnostic biomarker. We proposed the dgEmbed-KNN and the Aggregation-SVM diagnostic models, which use the spatio-temporal information from DBN and interactive information among brain regions represented by dynamic graph embedding. The classification accuracies show that dgEmbed-KNN model performs slightly better than traditional machine learning and deep learning methods, while the Aggregation-SVM model has a very good capacity to diagnose ASD using aggregation brain network connections as features. We discovered over- and under-connections in ASD at the level of dynamic connections, involving brain regions of the postcentral gyrus, the insula, the cerebellum, the caudate nucleus, and the temporal pole. We also found abnormal dynamic interactions associated with ASD within/between the functional subnetworks, including default mode network, visual network, auditory network and saliency network. These can provide potential DBN biomarkers for ASD identification. Graphical Abstract</description><identifier>ISSN: 1913-2751</identifier><identifier>EISSN: 1867-1462</identifier><identifier>DOI: 10.1007/s12539-023-00592-w</identifier><identifier>PMID: 38060171</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Autism ; Autism Spectrum Disorder ; Biomarkers ; Biomedical and Life Sciences ; Brain ; Brain - diagnostic imaging ; Brain Mapping - methods ; Caudate nucleus ; Cerebellum ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Appl. in Life Sciences ; Deep learning ; Diagnosis ; Diagnostic systems ; Embedding ; Graphical representations ; Health Sciences ; Humans ; Life Sciences ; Machine learning ; Magnetic Resonance Imaging - methods ; Mathematical and Computational Physics ; Medicine ; Neural networks ; Neural Pathways ; Original Research Article ; Postcentral gyrus ; Sensory integration ; Statistics for Life Sciences ; Support vector machines ; Theoretical ; Theoretical and Computational Chemistry</subject><ispartof>Interdisciplinary sciences : computational life sciences, 2024-03, Vol.16 (1), p.141-159</ispartof><rights>International Association of Scientists in the Interdisciplinary Areas 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. International Association of Scientists in the Interdisciplinary Areas.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d26f419ae0803a680b452b62b6cfb362e9e7dd9eff2debf6fa719204a1fe8f5b3</citedby><cites>FETCH-LOGICAL-c375t-d26f419ae0803a680b452b62b6cfb362e9e7dd9eff2debf6fa719204a1fe8f5b3</cites><orcidid>0000-0001-8383-6900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38060171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yanting</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Ding, Yanrui</creatorcontrib><title>The Dynamical Biomarkers in Functional Connectivity of Autism Spectrum Disorder Based on Dynamic Graph Embedding</title><title>Interdisciplinary sciences : computational life sciences</title><addtitle>Interdiscip Sci Comput Life Sci</addtitle><addtitle>Interdiscip Sci</addtitle><description>Autism spectrum disorder (ASD) is a neurological and developmental disorder and its early diagnosis is a challenging task. The dynamic brain network (DBN) offers a wealth of information for the diagnosis and treatment of ASD. Mining the spatio-temporal characteristics of DBN is critical for finding dynamic communication across brain regions and, ultimately, identifying the ASD diagnostic biomarker. We proposed the dgEmbed-KNN and the Aggregation-SVM diagnostic models, which use the spatio-temporal information from DBN and interactive information among brain regions represented by dynamic graph embedding. The classification accuracies show that dgEmbed-KNN model performs slightly better than traditional machine learning and deep learning methods, while the Aggregation-SVM model has a very good capacity to diagnose ASD using aggregation brain network connections as features. We discovered over- and under-connections in ASD at the level of dynamic connections, involving brain regions of the postcentral gyrus, the insula, the cerebellum, the caudate nucleus, and the temporal pole. We also found abnormal dynamic interactions associated with ASD within/between the functional subnetworks, including default mode network, visual network, auditory network and saliency network. These can provide potential DBN biomarkers for ASD identification. Graphical Abstract</description><subject>Autism</subject><subject>Autism Spectrum Disorder</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Mapping - methods</subject><subject>Caudate nucleus</subject><subject>Cerebellum</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Embedding</subject><subject>Graphical representations</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical and Computational Physics</subject><subject>Medicine</subject><subject>Neural networks</subject><subject>Neural Pathways</subject><subject>Original Research Article</subject><subject>Postcentral gyrus</subject><subject>Sensory integration</subject><subject>Statistics for Life Sciences</subject><subject>Support vector machines</subject><subject>Theoretical</subject><subject>Theoretical and Computational Chemistry</subject><issn>1913-2751</issn><issn>1867-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFSEUhonR2Fr9Ay4MiRs3Uw8wMMOyvf0yaeLCuibMcGipd2CEGZv770Vvq4kLExI-znNeAg8hbxkcM4DuY2FcCt0AFw2A1Lx5eEYOWa-6hrWKP69rzUTDO8kOyKtS7gFU2wt4SQ5EDwpYxw7JfHOH9GwX7RRGu6WnIU02f8NcaIj0Yo3jElKshU2KEevmR1h2NHl6si6hTPTLXA_zOtGzUFJ2mOmpLehoik-h9DLb-Y6eTwM6F-Lta_LC223BN4_zEfl6cX6zuWquP19-2pxcN6Po5NI4rnzLtEXoQVjVw9BKPqg6Rj8IxVFj55xG77nDwStvO6Y5tJZ57L0cxBH5sM-dc_q-YlnMFMqI262NmNZieK-16EBIXdH3_6D3ac311ZXSXGupNMhK8T015lRKRm_mHOpn7QwD88uH2fsw1Yf57cM81KZ3j9HrMKH70_IkoAJiD5RaireY_979n9ifHW6XUg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Liu, Yanting</creator><creator>Wang, Hao</creator><creator>Ding, Yanrui</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8383-6900</orcidid></search><sort><creationdate>20240301</creationdate><title>The Dynamical Biomarkers in Functional Connectivity of Autism Spectrum Disorder Based on Dynamic Graph Embedding</title><author>Liu, Yanting ; Wang, Hao ; Ding, Yanrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d26f419ae0803a680b452b62b6cfb362e9e7dd9eff2debf6fa719204a1fe8f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autism</topic><topic>Autism Spectrum Disorder</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Mapping - methods</topic><topic>Caudate nucleus</topic><topic>Cerebellum</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Embedding</topic><topic>Graphical representations</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical and Computational Physics</topic><topic>Medicine</topic><topic>Neural networks</topic><topic>Neural Pathways</topic><topic>Original Research Article</topic><topic>Postcentral gyrus</topic><topic>Sensory integration</topic><topic>Statistics for Life Sciences</topic><topic>Support vector machines</topic><topic>Theoretical</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanting</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Ding, Yanrui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Interdisciplinary sciences : computational life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanting</au><au>Wang, Hao</au><au>Ding, Yanrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dynamical Biomarkers in Functional Connectivity of Autism Spectrum Disorder Based on Dynamic Graph Embedding</atitle><jtitle>Interdisciplinary sciences : computational life sciences</jtitle><stitle>Interdiscip Sci Comput Life Sci</stitle><addtitle>Interdiscip Sci</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>141</spage><epage>159</epage><pages>141-159</pages><issn>1913-2751</issn><eissn>1867-1462</eissn><abstract>Autism spectrum disorder (ASD) is a neurological and developmental disorder and its early diagnosis is a challenging task. The dynamic brain network (DBN) offers a wealth of information for the diagnosis and treatment of ASD. Mining the spatio-temporal characteristics of DBN is critical for finding dynamic communication across brain regions and, ultimately, identifying the ASD diagnostic biomarker. We proposed the dgEmbed-KNN and the Aggregation-SVM diagnostic models, which use the spatio-temporal information from DBN and interactive information among brain regions represented by dynamic graph embedding. The classification accuracies show that dgEmbed-KNN model performs slightly better than traditional machine learning and deep learning methods, while the Aggregation-SVM model has a very good capacity to diagnose ASD using aggregation brain network connections as features. We discovered over- and under-connections in ASD at the level of dynamic connections, involving brain regions of the postcentral gyrus, the insula, the cerebellum, the caudate nucleus, and the temporal pole. We also found abnormal dynamic interactions associated with ASD within/between the functional subnetworks, including default mode network, visual network, auditory network and saliency network. These can provide potential DBN biomarkers for ASD identification. Graphical Abstract</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>38060171</pmid><doi>10.1007/s12539-023-00592-w</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8383-6900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1913-2751
ispartof Interdisciplinary sciences : computational life sciences, 2024-03, Vol.16 (1), p.141-159
issn 1913-2751
1867-1462
language eng
recordid cdi_proquest_miscellaneous_2899370359
source Springer Nature
subjects Autism
Autism Spectrum Disorder
Biomarkers
Biomedical and Life Sciences
Brain
Brain - diagnostic imaging
Brain Mapping - methods
Caudate nucleus
Cerebellum
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Deep learning
Diagnosis
Diagnostic systems
Embedding
Graphical representations
Health Sciences
Humans
Life Sciences
Machine learning
Magnetic Resonance Imaging - methods
Mathematical and Computational Physics
Medicine
Neural networks
Neural Pathways
Original Research Article
Postcentral gyrus
Sensory integration
Statistics for Life Sciences
Support vector machines
Theoretical
Theoretical and Computational Chemistry
title The Dynamical Biomarkers in Functional Connectivity of Autism Spectrum Disorder Based on Dynamic Graph Embedding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dynamical%20Biomarkers%20in%20Functional%20Connectivity%20of%20Autism%20Spectrum%20Disorder%20Based%20on%20Dynamic%20Graph%20Embedding&rft.jtitle=Interdisciplinary%20sciences%20:%20computational%20life%20sciences&rft.au=Liu,%20Yanting&rft.date=2024-03-01&rft.volume=16&rft.issue=1&rft.spage=141&rft.epage=159&rft.pages=141-159&rft.issn=1913-2751&rft.eissn=1867-1462&rft_id=info:doi/10.1007/s12539-023-00592-w&rft_dat=%3Cproquest_cross%3E2929956905%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-d26f419ae0803a680b452b62b6cfb362e9e7dd9eff2debf6fa719204a1fe8f5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929956905&rft_id=info:pmid/38060171&rfr_iscdi=true