Loading…
Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation
The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reve...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-03, Vol.36 (11), p.e2311458-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63 |
---|---|
cites | cdi_FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63 |
container_end_page | n/a |
container_issue | 11 |
container_start_page | e2311458 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Mussakhanuly, Nursultan Soufiani, Arman Mahboubi Bernardi, Stefano Gan, Jianing Bhattacharyya, Saroj Kumar Chin, Robert Lee Muhammad, Hanif Dubajic, Milos Gentle, Angus Chen, Weijian Zhang, Meng Nielsen, Michael P. Huang, Shujuan Asbury, John Widmer‐Cooper, Asaph Yun, Jae Sung Hao, Xiaojing |
description | The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reverse segregation. Localization of polarons results in an order of magnitude decrease in excess carrier density (polaron population), causing a reduced impact of the light‐induced strain (LIS – responsible for segregation) on the perovskite framework. Meanwhile, exposing the lattice to TDIS exceeding the LIS can eliminate the photoexcitation‐induced strain gradient, as thermal fluctuations of the lattice can mask the LIS strain. Under continuous 0.1 W cm⁻2 illumination (upon segregation), the strain disorder is estimated to be 0.14%, while at 80 °C under dark conditions, the strain is 0.23%. However, in situ heating of the segregated film to 80 °C under continuous illumination (upon reversal) increases the total strain disorder to 0.25%, where TDIS is likely to have a dominant contribution. Therefore, the contribution of entropy to the system's free energy is likely to dominate, respectively. Various temperature‐dependent in situ measurements and simulations further support the results. These findings highlight the importance of strain homogenization for designing stable perovskites under real‐world operating conditions.
Exceeding thermal disorder‐induced strain (TDIS) over light‐induced strain can eliminate the photoexcitation‐induced strain gradient responsible for segregation. Simultaneously, dynamic disorder‐inducing polaron localization significantly reduces excess carrier density, thereby mitigating the impact of light‐induced strain. As a result, entropy dominates the system's free energy. These insights highlight the importance of strain homogenization for stable‐phase, mixed‐halide perovskites. |
doi_str_mv | 10.1002/adma.202311458 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899371865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956576329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63</originalsourceid><addsrcrecordid>eNqFkE1PFTEUQBuCkSe6ZUmasGEzz35MO-3y5YFC8oyJ4NbmTnsHS-YD2hkIrvwJ_kZ_iYMPMXHj6i7uuSc3h5ADzpacMfEWQgdLwYTkvFRmhyy4ErwomVW7ZMGsVIXVpdkjr3K-ZoxZzfRLsicNU7bkakG-XH7F1EFLT2IeUsD08_uP8z5MHgO9GBPEnkIf6BpSipjoZvDQxm8wxqGnKz_GOxiRfsI7TBnp2bwLSC_wKuHVb-Y1edFAm_HN09wnn9-dXq7Pis3H9-fr1abwJZemAPCSK1lZIa3EmgOEYLwtG5QClDcN1Er5UgLXqL01TWW4EKGpg65q8Fruk-Ot9yYNtxPm0XUxe2xb6HGYshPGWllxo9WMHv2DXg9T6ufvnLBKq0pLYWdquaV8GnJO2LibFDtID44z91jePZZ3z-Xng8Mn7VR3GJ7xP6lnwG6B-9jiw390bnXyYfVX_gv5zpEP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956576329</pqid></control><display><type>article</type><title>Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mussakhanuly, Nursultan ; Soufiani, Arman Mahboubi ; Bernardi, Stefano ; Gan, Jianing ; Bhattacharyya, Saroj Kumar ; Chin, Robert Lee ; Muhammad, Hanif ; Dubajic, Milos ; Gentle, Angus ; Chen, Weijian ; Zhang, Meng ; Nielsen, Michael P. ; Huang, Shujuan ; Asbury, John ; Widmer‐Cooper, Asaph ; Yun, Jae Sung ; Hao, Xiaojing</creator><creatorcontrib>Mussakhanuly, Nursultan ; Soufiani, Arman Mahboubi ; Bernardi, Stefano ; Gan, Jianing ; Bhattacharyya, Saroj Kumar ; Chin, Robert Lee ; Muhammad, Hanif ; Dubajic, Milos ; Gentle, Angus ; Chen, Weijian ; Zhang, Meng ; Nielsen, Michael P. ; Huang, Shujuan ; Asbury, John ; Widmer‐Cooper, Asaph ; Yun, Jae Sung ; Hao, Xiaojing</creatorcontrib><description>The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reverse segregation. Localization of polarons results in an order of magnitude decrease in excess carrier density (polaron population), causing a reduced impact of the light‐induced strain (LIS – responsible for segregation) on the perovskite framework. Meanwhile, exposing the lattice to TDIS exceeding the LIS can eliminate the photoexcitation‐induced strain gradient, as thermal fluctuations of the lattice can mask the LIS strain. Under continuous 0.1 W cm⁻2 illumination (upon segregation), the strain disorder is estimated to be 0.14%, while at 80 °C under dark conditions, the strain is 0.23%. However, in situ heating of the segregated film to 80 °C under continuous illumination (upon reversal) increases the total strain disorder to 0.25%, where TDIS is likely to have a dominant contribution. Therefore, the contribution of entropy to the system's free energy is likely to dominate, respectively. Various temperature‐dependent in situ measurements and simulations further support the results. These findings highlight the importance of strain homogenization for designing stable perovskites under real‐world operating conditions.
Exceeding thermal disorder‐induced strain (TDIS) over light‐induced strain can eliminate the photoexcitation‐induced strain gradient responsible for segregation. Simultaneously, dynamic disorder‐inducing polaron localization significantly reduces excess carrier density, thereby mitigating the impact of light‐induced strain. As a result, entropy dominates the system's free energy. These insights highlight the importance of strain homogenization for stable‐phase, mixed‐halide perovskites.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202311458</identifier><identifier>PMID: 38059415</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier density ; carrier localization ; Free energy ; halide segregation/reversal ; Illumination ; In situ measurement ; Localization ; mixed‐halide wide‐bandgap perovskite ; Perovskites ; Photoexcitation ; Polarons ; strain ; Temperature dependence ; thermal/dynamic‐disorder</subject><ispartof>Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2311458-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63</citedby><cites>FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63</cites><orcidid>0000-0001-5903-4481 ; 0009-0003-4914-9607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38059415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mussakhanuly, Nursultan</creatorcontrib><creatorcontrib>Soufiani, Arman Mahboubi</creatorcontrib><creatorcontrib>Bernardi, Stefano</creatorcontrib><creatorcontrib>Gan, Jianing</creatorcontrib><creatorcontrib>Bhattacharyya, Saroj Kumar</creatorcontrib><creatorcontrib>Chin, Robert Lee</creatorcontrib><creatorcontrib>Muhammad, Hanif</creatorcontrib><creatorcontrib>Dubajic, Milos</creatorcontrib><creatorcontrib>Gentle, Angus</creatorcontrib><creatorcontrib>Chen, Weijian</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Nielsen, Michael P.</creatorcontrib><creatorcontrib>Huang, Shujuan</creatorcontrib><creatorcontrib>Asbury, John</creatorcontrib><creatorcontrib>Widmer‐Cooper, Asaph</creatorcontrib><creatorcontrib>Yun, Jae Sung</creatorcontrib><creatorcontrib>Hao, Xiaojing</creatorcontrib><title>Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reverse segregation. Localization of polarons results in an order of magnitude decrease in excess carrier density (polaron population), causing a reduced impact of the light‐induced strain (LIS – responsible for segregation) on the perovskite framework. Meanwhile, exposing the lattice to TDIS exceeding the LIS can eliminate the photoexcitation‐induced strain gradient, as thermal fluctuations of the lattice can mask the LIS strain. Under continuous 0.1 W cm⁻2 illumination (upon segregation), the strain disorder is estimated to be 0.14%, while at 80 °C under dark conditions, the strain is 0.23%. However, in situ heating of the segregated film to 80 °C under continuous illumination (upon reversal) increases the total strain disorder to 0.25%, where TDIS is likely to have a dominant contribution. Therefore, the contribution of entropy to the system's free energy is likely to dominate, respectively. Various temperature‐dependent in situ measurements and simulations further support the results. These findings highlight the importance of strain homogenization for designing stable perovskites under real‐world operating conditions.
Exceeding thermal disorder‐induced strain (TDIS) over light‐induced strain can eliminate the photoexcitation‐induced strain gradient responsible for segregation. Simultaneously, dynamic disorder‐inducing polaron localization significantly reduces excess carrier density, thereby mitigating the impact of light‐induced strain. As a result, entropy dominates the system's free energy. These insights highlight the importance of strain homogenization for stable‐phase, mixed‐halide perovskites.</description><subject>Carrier density</subject><subject>carrier localization</subject><subject>Free energy</subject><subject>halide segregation/reversal</subject><subject>Illumination</subject><subject>In situ measurement</subject><subject>Localization</subject><subject>mixed‐halide wide‐bandgap perovskite</subject><subject>Perovskites</subject><subject>Photoexcitation</subject><subject>Polarons</subject><subject>strain</subject><subject>Temperature dependence</subject><subject>thermal/dynamic‐disorder</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PFTEUQBuCkSe6ZUmasGEzz35MO-3y5YFC8oyJ4NbmTnsHS-YD2hkIrvwJ_kZ_iYMPMXHj6i7uuSc3h5ADzpacMfEWQgdLwYTkvFRmhyy4ErwomVW7ZMGsVIXVpdkjr3K-ZoxZzfRLsicNU7bkakG-XH7F1EFLT2IeUsD08_uP8z5MHgO9GBPEnkIf6BpSipjoZvDQxm8wxqGnKz_GOxiRfsI7TBnp2bwLSC_wKuHVb-Y1edFAm_HN09wnn9-dXq7Pis3H9-fr1abwJZemAPCSK1lZIa3EmgOEYLwtG5QClDcN1Er5UgLXqL01TWW4EKGpg65q8Fruk-Ot9yYNtxPm0XUxe2xb6HGYshPGWllxo9WMHv2DXg9T6ufvnLBKq0pLYWdquaV8GnJO2LibFDtID44z91jePZZ3z-Xng8Mn7VR3GJ7xP6lnwG6B-9jiw390bnXyYfVX_gv5zpEP</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Mussakhanuly, Nursultan</creator><creator>Soufiani, Arman Mahboubi</creator><creator>Bernardi, Stefano</creator><creator>Gan, Jianing</creator><creator>Bhattacharyya, Saroj Kumar</creator><creator>Chin, Robert Lee</creator><creator>Muhammad, Hanif</creator><creator>Dubajic, Milos</creator><creator>Gentle, Angus</creator><creator>Chen, Weijian</creator><creator>Zhang, Meng</creator><creator>Nielsen, Michael P.</creator><creator>Huang, Shujuan</creator><creator>Asbury, John</creator><creator>Widmer‐Cooper, Asaph</creator><creator>Yun, Jae Sung</creator><creator>Hao, Xiaojing</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5903-4481</orcidid><orcidid>https://orcid.org/0009-0003-4914-9607</orcidid></search><sort><creationdate>20240301</creationdate><title>Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation</title><author>Mussakhanuly, Nursultan ; Soufiani, Arman Mahboubi ; Bernardi, Stefano ; Gan, Jianing ; Bhattacharyya, Saroj Kumar ; Chin, Robert Lee ; Muhammad, Hanif ; Dubajic, Milos ; Gentle, Angus ; Chen, Weijian ; Zhang, Meng ; Nielsen, Michael P. ; Huang, Shujuan ; Asbury, John ; Widmer‐Cooper, Asaph ; Yun, Jae Sung ; Hao, Xiaojing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier density</topic><topic>carrier localization</topic><topic>Free energy</topic><topic>halide segregation/reversal</topic><topic>Illumination</topic><topic>In situ measurement</topic><topic>Localization</topic><topic>mixed‐halide wide‐bandgap perovskite</topic><topic>Perovskites</topic><topic>Photoexcitation</topic><topic>Polarons</topic><topic>strain</topic><topic>Temperature dependence</topic><topic>thermal/dynamic‐disorder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mussakhanuly, Nursultan</creatorcontrib><creatorcontrib>Soufiani, Arman Mahboubi</creatorcontrib><creatorcontrib>Bernardi, Stefano</creatorcontrib><creatorcontrib>Gan, Jianing</creatorcontrib><creatorcontrib>Bhattacharyya, Saroj Kumar</creatorcontrib><creatorcontrib>Chin, Robert Lee</creatorcontrib><creatorcontrib>Muhammad, Hanif</creatorcontrib><creatorcontrib>Dubajic, Milos</creatorcontrib><creatorcontrib>Gentle, Angus</creatorcontrib><creatorcontrib>Chen, Weijian</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Nielsen, Michael P.</creatorcontrib><creatorcontrib>Huang, Shujuan</creatorcontrib><creatorcontrib>Asbury, John</creatorcontrib><creatorcontrib>Widmer‐Cooper, Asaph</creatorcontrib><creatorcontrib>Yun, Jae Sung</creatorcontrib><creatorcontrib>Hao, Xiaojing</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mussakhanuly, Nursultan</au><au>Soufiani, Arman Mahboubi</au><au>Bernardi, Stefano</au><au>Gan, Jianing</au><au>Bhattacharyya, Saroj Kumar</au><au>Chin, Robert Lee</au><au>Muhammad, Hanif</au><au>Dubajic, Milos</au><au>Gentle, Angus</au><au>Chen, Weijian</au><au>Zhang, Meng</au><au>Nielsen, Michael P.</au><au>Huang, Shujuan</au><au>Asbury, John</au><au>Widmer‐Cooper, Asaph</au><au>Yun, Jae Sung</au><au>Hao, Xiaojing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><spage>e2311458</spage><epage>n/a</epage><pages>e2311458-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reverse segregation. Localization of polarons results in an order of magnitude decrease in excess carrier density (polaron population), causing a reduced impact of the light‐induced strain (LIS – responsible for segregation) on the perovskite framework. Meanwhile, exposing the lattice to TDIS exceeding the LIS can eliminate the photoexcitation‐induced strain gradient, as thermal fluctuations of the lattice can mask the LIS strain. Under continuous 0.1 W cm⁻2 illumination (upon segregation), the strain disorder is estimated to be 0.14%, while at 80 °C under dark conditions, the strain is 0.23%. However, in situ heating of the segregated film to 80 °C under continuous illumination (upon reversal) increases the total strain disorder to 0.25%, where TDIS is likely to have a dominant contribution. Therefore, the contribution of entropy to the system's free energy is likely to dominate, respectively. Various temperature‐dependent in situ measurements and simulations further support the results. These findings highlight the importance of strain homogenization for designing stable perovskites under real‐world operating conditions.
Exceeding thermal disorder‐induced strain (TDIS) over light‐induced strain can eliminate the photoexcitation‐induced strain gradient responsible for segregation. Simultaneously, dynamic disorder‐inducing polaron localization significantly reduces excess carrier density, thereby mitigating the impact of light‐induced strain. As a result, entropy dominates the system's free energy. These insights highlight the importance of strain homogenization for stable‐phase, mixed‐halide perovskites.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38059415</pmid><doi>10.1002/adma.202311458</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5903-4481</orcidid><orcidid>https://orcid.org/0009-0003-4914-9607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2311458-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2899371865 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carrier density carrier localization Free energy halide segregation/reversal Illumination In situ measurement Localization mixed‐halide wide‐bandgap perovskite Perovskites Photoexcitation Polarons strain Temperature dependence thermal/dynamic‐disorder |
title | Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Disorder%E2%80%90Induced%20Strain%20and%20Carrier%20Localization%20Activate%20Reverse%20Halide%20Segregation&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Mussakhanuly,%20Nursultan&rft.date=2024-03-01&rft.volume=36&rft.issue=11&rft.spage=e2311458&rft.epage=n/a&rft.pages=e2311458-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202311458&rft_dat=%3Cproquest_cross%3E2956576329%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956576329&rft_id=info:pmid/38059415&rfr_iscdi=true |