Loading…

Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation

The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reve...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-03, Vol.36 (11), p.e2311458-n/a
Main Authors: Mussakhanuly, Nursultan, Soufiani, Arman Mahboubi, Bernardi, Stefano, Gan, Jianing, Bhattacharyya, Saroj Kumar, Chin, Robert Lee, Muhammad, Hanif, Dubajic, Milos, Gentle, Angus, Chen, Weijian, Zhang, Meng, Nielsen, Michael P., Huang, Shujuan, Asbury, John, Widmer‐Cooper, Asaph, Yun, Jae Sung, Hao, Xiaojing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63
cites cdi_FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63
container_end_page n/a
container_issue 11
container_start_page e2311458
container_title Advanced materials (Weinheim)
container_volume 36
creator Mussakhanuly, Nursultan
Soufiani, Arman Mahboubi
Bernardi, Stefano
Gan, Jianing
Bhattacharyya, Saroj Kumar
Chin, Robert Lee
Muhammad, Hanif
Dubajic, Milos
Gentle, Angus
Chen, Weijian
Zhang, Meng
Nielsen, Michael P.
Huang, Shujuan
Asbury, John
Widmer‐Cooper, Asaph
Yun, Jae Sung
Hao, Xiaojing
description The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reverse segregation. Localization of polarons results in an order of magnitude decrease in excess carrier density (polaron population), causing a reduced impact of the light‐induced strain (LIS – responsible for segregation) on the perovskite framework. Meanwhile, exposing the lattice to TDIS exceeding the LIS can eliminate the photoexcitation‐induced strain gradient, as thermal fluctuations of the lattice can mask the LIS strain. Under continuous 0.1 W cm⁻2 illumination (upon segregation), the strain disorder is estimated to be 0.14%, while at 80 °C under dark conditions, the strain is 0.23%. However, in situ heating of the segregated film to 80 °C under continuous illumination (upon reversal) increases the total strain disorder to 0.25%, where TDIS is likely to have a dominant contribution. Therefore, the contribution of entropy to the system's free energy is likely to dominate, respectively. Various temperature‐dependent in situ measurements and simulations further support the results. These findings highlight the importance of strain homogenization for designing stable perovskites under real‐world operating conditions. Exceeding thermal disorder‐induced strain (TDIS) over light‐induced strain can eliminate the photoexcitation‐induced strain gradient responsible for segregation. Simultaneously, dynamic disorder‐inducing polaron localization significantly reduces excess carrier density, thereby mitigating the impact of light‐induced strain. As a result, entropy dominates the system's free energy. These insights highlight the importance of strain homogenization for stable‐phase, mixed‐halide perovskites.
doi_str_mv 10.1002/adma.202311458
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899371865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956576329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63</originalsourceid><addsrcrecordid>eNqFkE1PFTEUQBuCkSe6ZUmasGEzz35MO-3y5YFC8oyJ4NbmTnsHS-YD2hkIrvwJ_kZ_iYMPMXHj6i7uuSc3h5ADzpacMfEWQgdLwYTkvFRmhyy4ErwomVW7ZMGsVIXVpdkjr3K-ZoxZzfRLsicNU7bkakG-XH7F1EFLT2IeUsD08_uP8z5MHgO9GBPEnkIf6BpSipjoZvDQxm8wxqGnKz_GOxiRfsI7TBnp2bwLSC_wKuHVb-Y1edFAm_HN09wnn9-dXq7Pis3H9-fr1abwJZemAPCSK1lZIa3EmgOEYLwtG5QClDcN1Er5UgLXqL01TWW4EKGpg65q8Fruk-Ot9yYNtxPm0XUxe2xb6HGYshPGWllxo9WMHv2DXg9T6ufvnLBKq0pLYWdquaV8GnJO2LibFDtID44z91jePZZ3z-Xng8Mn7VR3GJ7xP6lnwG6B-9jiw390bnXyYfVX_gv5zpEP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956576329</pqid></control><display><type>article</type><title>Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mussakhanuly, Nursultan ; Soufiani, Arman Mahboubi ; Bernardi, Stefano ; Gan, Jianing ; Bhattacharyya, Saroj Kumar ; Chin, Robert Lee ; Muhammad, Hanif ; Dubajic, Milos ; Gentle, Angus ; Chen, Weijian ; Zhang, Meng ; Nielsen, Michael P. ; Huang, Shujuan ; Asbury, John ; Widmer‐Cooper, Asaph ; Yun, Jae Sung ; Hao, Xiaojing</creator><creatorcontrib>Mussakhanuly, Nursultan ; Soufiani, Arman Mahboubi ; Bernardi, Stefano ; Gan, Jianing ; Bhattacharyya, Saroj Kumar ; Chin, Robert Lee ; Muhammad, Hanif ; Dubajic, Milos ; Gentle, Angus ; Chen, Weijian ; Zhang, Meng ; Nielsen, Michael P. ; Huang, Shujuan ; Asbury, John ; Widmer‐Cooper, Asaph ; Yun, Jae Sung ; Hao, Xiaojing</creatorcontrib><description>The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reverse segregation. Localization of polarons results in an order of magnitude decrease in excess carrier density (polaron population), causing a reduced impact of the light‐induced strain (LIS – responsible for segregation) on the perovskite framework. Meanwhile, exposing the lattice to TDIS exceeding the LIS can eliminate the photoexcitation‐induced strain gradient, as thermal fluctuations of the lattice can mask the LIS strain. Under continuous 0.1 W cm⁻2 illumination (upon segregation), the strain disorder is estimated to be 0.14%, while at 80 °C under dark conditions, the strain is 0.23%. However, in situ heating of the segregated film to 80 °C under continuous illumination (upon reversal) increases the total strain disorder to 0.25%, where TDIS is likely to have a dominant contribution. Therefore, the contribution of entropy to the system's free energy is likely to dominate, respectively. Various temperature‐dependent in situ measurements and simulations further support the results. These findings highlight the importance of strain homogenization for designing stable perovskites under real‐world operating conditions. Exceeding thermal disorder‐induced strain (TDIS) over light‐induced strain can eliminate the photoexcitation‐induced strain gradient responsible for segregation. Simultaneously, dynamic disorder‐inducing polaron localization significantly reduces excess carrier density, thereby mitigating the impact of light‐induced strain. As a result, entropy dominates the system's free energy. These insights highlight the importance of strain homogenization for stable‐phase, mixed‐halide perovskites.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202311458</identifier><identifier>PMID: 38059415</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier density ; carrier localization ; Free energy ; halide segregation/reversal ; Illumination ; In situ measurement ; Localization ; mixed‐halide wide‐bandgap perovskite ; Perovskites ; Photoexcitation ; Polarons ; strain ; Temperature dependence ; thermal/dynamic‐disorder</subject><ispartof>Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2311458-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63</citedby><cites>FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63</cites><orcidid>0000-0001-5903-4481 ; 0009-0003-4914-9607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38059415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mussakhanuly, Nursultan</creatorcontrib><creatorcontrib>Soufiani, Arman Mahboubi</creatorcontrib><creatorcontrib>Bernardi, Stefano</creatorcontrib><creatorcontrib>Gan, Jianing</creatorcontrib><creatorcontrib>Bhattacharyya, Saroj Kumar</creatorcontrib><creatorcontrib>Chin, Robert Lee</creatorcontrib><creatorcontrib>Muhammad, Hanif</creatorcontrib><creatorcontrib>Dubajic, Milos</creatorcontrib><creatorcontrib>Gentle, Angus</creatorcontrib><creatorcontrib>Chen, Weijian</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Nielsen, Michael P.</creatorcontrib><creatorcontrib>Huang, Shujuan</creatorcontrib><creatorcontrib>Asbury, John</creatorcontrib><creatorcontrib>Widmer‐Cooper, Asaph</creatorcontrib><creatorcontrib>Yun, Jae Sung</creatorcontrib><creatorcontrib>Hao, Xiaojing</creatorcontrib><title>Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reverse segregation. Localization of polarons results in an order of magnitude decrease in excess carrier density (polaron population), causing a reduced impact of the light‐induced strain (LIS – responsible for segregation) on the perovskite framework. Meanwhile, exposing the lattice to TDIS exceeding the LIS can eliminate the photoexcitation‐induced strain gradient, as thermal fluctuations of the lattice can mask the LIS strain. Under continuous 0.1 W cm⁻2 illumination (upon segregation), the strain disorder is estimated to be 0.14%, while at 80 °C under dark conditions, the strain is 0.23%. However, in situ heating of the segregated film to 80 °C under continuous illumination (upon reversal) increases the total strain disorder to 0.25%, where TDIS is likely to have a dominant contribution. Therefore, the contribution of entropy to the system's free energy is likely to dominate, respectively. Various temperature‐dependent in situ measurements and simulations further support the results. These findings highlight the importance of strain homogenization for designing stable perovskites under real‐world operating conditions. Exceeding thermal disorder‐induced strain (TDIS) over light‐induced strain can eliminate the photoexcitation‐induced strain gradient responsible for segregation. Simultaneously, dynamic disorder‐inducing polaron localization significantly reduces excess carrier density, thereby mitigating the impact of light‐induced strain. As a result, entropy dominates the system's free energy. These insights highlight the importance of strain homogenization for stable‐phase, mixed‐halide perovskites.</description><subject>Carrier density</subject><subject>carrier localization</subject><subject>Free energy</subject><subject>halide segregation/reversal</subject><subject>Illumination</subject><subject>In situ measurement</subject><subject>Localization</subject><subject>mixed‐halide wide‐bandgap perovskite</subject><subject>Perovskites</subject><subject>Photoexcitation</subject><subject>Polarons</subject><subject>strain</subject><subject>Temperature dependence</subject><subject>thermal/dynamic‐disorder</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PFTEUQBuCkSe6ZUmasGEzz35MO-3y5YFC8oyJ4NbmTnsHS-YD2hkIrvwJ_kZ_iYMPMXHj6i7uuSc3h5ADzpacMfEWQgdLwYTkvFRmhyy4ErwomVW7ZMGsVIXVpdkjr3K-ZoxZzfRLsicNU7bkakG-XH7F1EFLT2IeUsD08_uP8z5MHgO9GBPEnkIf6BpSipjoZvDQxm8wxqGnKz_GOxiRfsI7TBnp2bwLSC_wKuHVb-Y1edFAm_HN09wnn9-dXq7Pis3H9-fr1abwJZemAPCSK1lZIa3EmgOEYLwtG5QClDcN1Er5UgLXqL01TWW4EKGpg65q8Fruk-Ot9yYNtxPm0XUxe2xb6HGYshPGWllxo9WMHv2DXg9T6ufvnLBKq0pLYWdquaV8GnJO2LibFDtID44z91jePZZ3z-Xng8Mn7VR3GJ7xP6lnwG6B-9jiw390bnXyYfVX_gv5zpEP</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Mussakhanuly, Nursultan</creator><creator>Soufiani, Arman Mahboubi</creator><creator>Bernardi, Stefano</creator><creator>Gan, Jianing</creator><creator>Bhattacharyya, Saroj Kumar</creator><creator>Chin, Robert Lee</creator><creator>Muhammad, Hanif</creator><creator>Dubajic, Milos</creator><creator>Gentle, Angus</creator><creator>Chen, Weijian</creator><creator>Zhang, Meng</creator><creator>Nielsen, Michael P.</creator><creator>Huang, Shujuan</creator><creator>Asbury, John</creator><creator>Widmer‐Cooper, Asaph</creator><creator>Yun, Jae Sung</creator><creator>Hao, Xiaojing</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5903-4481</orcidid><orcidid>https://orcid.org/0009-0003-4914-9607</orcidid></search><sort><creationdate>20240301</creationdate><title>Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation</title><author>Mussakhanuly, Nursultan ; Soufiani, Arman Mahboubi ; Bernardi, Stefano ; Gan, Jianing ; Bhattacharyya, Saroj Kumar ; Chin, Robert Lee ; Muhammad, Hanif ; Dubajic, Milos ; Gentle, Angus ; Chen, Weijian ; Zhang, Meng ; Nielsen, Michael P. ; Huang, Shujuan ; Asbury, John ; Widmer‐Cooper, Asaph ; Yun, Jae Sung ; Hao, Xiaojing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier density</topic><topic>carrier localization</topic><topic>Free energy</topic><topic>halide segregation/reversal</topic><topic>Illumination</topic><topic>In situ measurement</topic><topic>Localization</topic><topic>mixed‐halide wide‐bandgap perovskite</topic><topic>Perovskites</topic><topic>Photoexcitation</topic><topic>Polarons</topic><topic>strain</topic><topic>Temperature dependence</topic><topic>thermal/dynamic‐disorder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mussakhanuly, Nursultan</creatorcontrib><creatorcontrib>Soufiani, Arman Mahboubi</creatorcontrib><creatorcontrib>Bernardi, Stefano</creatorcontrib><creatorcontrib>Gan, Jianing</creatorcontrib><creatorcontrib>Bhattacharyya, Saroj Kumar</creatorcontrib><creatorcontrib>Chin, Robert Lee</creatorcontrib><creatorcontrib>Muhammad, Hanif</creatorcontrib><creatorcontrib>Dubajic, Milos</creatorcontrib><creatorcontrib>Gentle, Angus</creatorcontrib><creatorcontrib>Chen, Weijian</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Nielsen, Michael P.</creatorcontrib><creatorcontrib>Huang, Shujuan</creatorcontrib><creatorcontrib>Asbury, John</creatorcontrib><creatorcontrib>Widmer‐Cooper, Asaph</creatorcontrib><creatorcontrib>Yun, Jae Sung</creatorcontrib><creatorcontrib>Hao, Xiaojing</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mussakhanuly, Nursultan</au><au>Soufiani, Arman Mahboubi</au><au>Bernardi, Stefano</au><au>Gan, Jianing</au><au>Bhattacharyya, Saroj Kumar</au><au>Chin, Robert Lee</au><au>Muhammad, Hanif</au><au>Dubajic, Milos</au><au>Gentle, Angus</au><au>Chen, Weijian</au><au>Zhang, Meng</au><au>Nielsen, Michael P.</au><au>Huang, Shujuan</au><au>Asbury, John</au><au>Widmer‐Cooper, Asaph</au><au>Yun, Jae Sung</au><au>Hao, Xiaojing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><spage>e2311458</spage><epage>n/a</epage><pages>e2311458-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat‐induced reversal remains unclear. This work finds that dynamic disorder‐induced localization of self‐trapped polarons and thermal disorder‐induced strain (TDIS) can be co‐acting drivers of reverse segregation. Localization of polarons results in an order of magnitude decrease in excess carrier density (polaron population), causing a reduced impact of the light‐induced strain (LIS – responsible for segregation) on the perovskite framework. Meanwhile, exposing the lattice to TDIS exceeding the LIS can eliminate the photoexcitation‐induced strain gradient, as thermal fluctuations of the lattice can mask the LIS strain. Under continuous 0.1 W cm⁻2 illumination (upon segregation), the strain disorder is estimated to be 0.14%, while at 80 °C under dark conditions, the strain is 0.23%. However, in situ heating of the segregated film to 80 °C under continuous illumination (upon reversal) increases the total strain disorder to 0.25%, where TDIS is likely to have a dominant contribution. Therefore, the contribution of entropy to the system's free energy is likely to dominate, respectively. Various temperature‐dependent in situ measurements and simulations further support the results. These findings highlight the importance of strain homogenization for designing stable perovskites under real‐world operating conditions. Exceeding thermal disorder‐induced strain (TDIS) over light‐induced strain can eliminate the photoexcitation‐induced strain gradient responsible for segregation. Simultaneously, dynamic disorder‐inducing polaron localization significantly reduces excess carrier density, thereby mitigating the impact of light‐induced strain. As a result, entropy dominates the system's free energy. These insights highlight the importance of strain homogenization for stable‐phase, mixed‐halide perovskites.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38059415</pmid><doi>10.1002/adma.202311458</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5903-4481</orcidid><orcidid>https://orcid.org/0009-0003-4914-9607</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2311458-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2899371865
source Wiley-Blackwell Read & Publish Collection
subjects Carrier density
carrier localization
Free energy
halide segregation/reversal
Illumination
In situ measurement
Localization
mixed‐halide wide‐bandgap perovskite
Perovskites
Photoexcitation
Polarons
strain
Temperature dependence
thermal/dynamic‐disorder
title Thermal Disorder‐Induced Strain and Carrier Localization Activate Reverse Halide Segregation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Disorder%E2%80%90Induced%20Strain%20and%20Carrier%20Localization%20Activate%20Reverse%20Halide%20Segregation&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Mussakhanuly,%20Nursultan&rft.date=2024-03-01&rft.volume=36&rft.issue=11&rft.spage=e2311458&rft.epage=n/a&rft.pages=e2311458-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202311458&rft_dat=%3Cproquest_cross%3E2956576329%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4138-aac3153792393eb1aadd8c94fe32a5c8fab55c43a16e6c98f78122dfbd67bac63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956576329&rft_id=info:pmid/38059415&rfr_iscdi=true