Loading…
Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction
Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and tre...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2024-02, Vol.28 (2), p.1110-1121 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3 |
container_end_page | 1121 |
container_issue | 2 |
container_start_page | 1110 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 28 |
creator | Jiao, Cui-Na Zhou, Feng Liu, Bao-Min Zheng, Chun-Hou Liu, Jin-Xing Gao, Ying-Lian |
description | Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice. |
doi_str_mv | 10.1109/JBHI.2023.3336247 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899372693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10345688</ieee_id><sourcerecordid>2899372693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMorqg_QBApePHSNclsu8mx7vr9iajXkKRTzNJt1qQ9-O_tuquIc5khPPMyeQg5YHTIGJWnN2dX10NOOQwBIOej8QbZ4SwXKedUbP7MTI4GZD_GGe1L9E8y3yYDEDTLIJM75O2-q1uX3mJosE4ug168J0XbYtM63yRTxEVSdK3HxvoSQ1L5kNy754cinbqIOmJSxOit09_4U8DS2eW4R7YqXUfcX_dd8npx_jK5Su8eL68nxV1qgfI2lWYMRgu0NgOmUUOJ3FgKzFAUUkjMcqM5tXpsuCilqEQOlen_S22GxpawS05WuYvgPzqMrZq7aLGudYO-i4oLKWHMcwk9evwPnfkuNP11iksOjAMH0VNsRdngYwxYqUVwcx0-FaNq6V0tvauld7X23u8crZM7M8fyd-PHcg8crgCHiH8CYZTlQsAXBSyGLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923123238</pqid></control><display><type>article</type><title>Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction</title><source>IEEE Xplore (Online service)</source><creator>Jiao, Cui-Na ; Zhou, Feng ; Liu, Bao-Min ; Zheng, Chun-Hou ; Liu, Jin-Xing ; Gao, Ying-Lian</creator><creatorcontrib>Jiao, Cui-Na ; Zhou, Feng ; Liu, Bao-Min ; Zheng, Chun-Hou ; Liu, Jin-Xing ; Gao, Ying-Lian</creatorcontrib><description>Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2023.3336247</identifier><identifier>PMID: 38055359</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Attention mechanism ; Bioinformatics ; Biological activity ; Computational Biology - methods ; Deep learning ; Disease ; Diseases ; graph convolution neural network ; Graphical representations ; Heterogeneous networks ; Humans ; Kernel ; Machine learning ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; miRNA-disease associations ; multiple kernel learning ; Neoplasms - genetics ; Predictive models ; Reliability ; Reproducibility of Results ; Similarity</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-02, Vol.28 (2), p.1110-1121</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3</cites><orcidid>0000-0002-1813-6411 ; 0000-0001-7479-8105 ; 0000-0002-2695-1926 ; 0000-0003-0483-5622 ; 0000-0001-9891-4115 ; 0000-0001-6104-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10345688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38055359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao, Cui-Na</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Liu, Bao-Min</creatorcontrib><creatorcontrib>Zheng, Chun-Hou</creatorcontrib><creatorcontrib>Liu, Jin-Xing</creatorcontrib><creatorcontrib>Gao, Ying-Lian</creatorcontrib><title>Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Attention mechanism</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Computational Biology - methods</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Diseases</subject><subject>graph convolution neural network</subject><subject>Graphical representations</subject><subject>Heterogeneous networks</subject><subject>Humans</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>miRNA-disease associations</subject><subject>multiple kernel learning</subject><subject>Neoplasms - genetics</subject><subject>Predictive models</subject><subject>Reliability</subject><subject>Reproducibility of Results</subject><subject>Similarity</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMorqg_QBApePHSNclsu8mx7vr9iajXkKRTzNJt1qQ9-O_tuquIc5khPPMyeQg5YHTIGJWnN2dX10NOOQwBIOej8QbZ4SwXKedUbP7MTI4GZD_GGe1L9E8y3yYDEDTLIJM75O2-q1uX3mJosE4ug168J0XbYtM63yRTxEVSdK3HxvoSQ1L5kNy754cinbqIOmJSxOit09_4U8DS2eW4R7YqXUfcX_dd8npx_jK5Su8eL68nxV1qgfI2lWYMRgu0NgOmUUOJ3FgKzFAUUkjMcqM5tXpsuCilqEQOlen_S22GxpawS05WuYvgPzqMrZq7aLGudYO-i4oLKWHMcwk9evwPnfkuNP11iksOjAMH0VNsRdngYwxYqUVwcx0-FaNq6V0tvauld7X23u8crZM7M8fyd-PHcg8crgCHiH8CYZTlQsAXBSyGLg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Jiao, Cui-Na</creator><creator>Zhou, Feng</creator><creator>Liu, Bao-Min</creator><creator>Zheng, Chun-Hou</creator><creator>Liu, Jin-Xing</creator><creator>Gao, Ying-Lian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1813-6411</orcidid><orcidid>https://orcid.org/0000-0001-7479-8105</orcidid><orcidid>https://orcid.org/0000-0002-2695-1926</orcidid><orcidid>https://orcid.org/0000-0003-0483-5622</orcidid><orcidid>https://orcid.org/0000-0001-9891-4115</orcidid><orcidid>https://orcid.org/0000-0001-6104-2149</orcidid></search><sort><creationdate>20240201</creationdate><title>Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction</title><author>Jiao, Cui-Na ; Zhou, Feng ; Liu, Bao-Min ; Zheng, Chun-Hou ; Liu, Jin-Xing ; Gao, Ying-Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Attention mechanism</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Computational Biology - methods</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Diseases</topic><topic>graph convolution neural network</topic><topic>Graphical representations</topic><topic>Heterogeneous networks</topic><topic>Humans</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>miRNA-disease associations</topic><topic>multiple kernel learning</topic><topic>Neoplasms - genetics</topic><topic>Predictive models</topic><topic>Reliability</topic><topic>Reproducibility of Results</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Cui-Na</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Liu, Bao-Min</creatorcontrib><creatorcontrib>Zheng, Chun-Hou</creatorcontrib><creatorcontrib>Liu, Jin-Xing</creatorcontrib><creatorcontrib>Gao, Ying-Lian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Cui-Na</au><au>Zhou, Feng</au><au>Liu, Bao-Min</au><au>Zheng, Chun-Hou</au><au>Liu, Jin-Xing</au><au>Gao, Ying-Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>1110</spage><epage>1121</epage><pages>1110-1121</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38055359</pmid><doi>10.1109/JBHI.2023.3336247</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1813-6411</orcidid><orcidid>https://orcid.org/0000-0001-7479-8105</orcidid><orcidid>https://orcid.org/0000-0002-2695-1926</orcidid><orcidid>https://orcid.org/0000-0003-0483-5622</orcidid><orcidid>https://orcid.org/0000-0001-9891-4115</orcidid><orcidid>https://orcid.org/0000-0001-6104-2149</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-02, Vol.28 (2), p.1110-1121 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_2899372693 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Artificial neural networks Attention mechanism Bioinformatics Biological activity Computational Biology - methods Deep learning Disease Diseases graph convolution neural network Graphical representations Heterogeneous networks Humans Kernel Machine learning MicroRNAs MicroRNAs - genetics miRNA miRNA-disease associations multiple kernel learning Neoplasms - genetics Predictive models Reliability Reproducibility of Results Similarity |
title | Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Kernel%20Graph%20Attention%20Deep%20Autoencoder%20for%20MiRNA-Disease%20Association%20Prediction&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Jiao,%20Cui-Na&rft.date=2024-02-01&rft.volume=28&rft.issue=2&rft.spage=1110&rft.epage=1121&rft.pages=1110-1121&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2023.3336247&rft_dat=%3Cproquest_ieee_%3E2899372693%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923123238&rft_id=info:pmid/38055359&rft_ieee_id=10345688&rfr_iscdi=true |