Loading…

Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction

Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and tre...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2024-02, Vol.28 (2), p.1110-1121
Main Authors: Jiao, Cui-Na, Zhou, Feng, Liu, Bao-Min, Zheng, Chun-Hou, Liu, Jin-Xing, Gao, Ying-Lian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3
container_end_page 1121
container_issue 2
container_start_page 1110
container_title IEEE journal of biomedical and health informatics
container_volume 28
creator Jiao, Cui-Na
Zhou, Feng
Liu, Bao-Min
Zheng, Chun-Hou
Liu, Jin-Xing
Gao, Ying-Lian
description Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.
doi_str_mv 10.1109/JBHI.2023.3336247
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2899372693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10345688</ieee_id><sourcerecordid>2899372693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMorqg_QBApePHSNclsu8mx7vr9iajXkKRTzNJt1qQ9-O_tuquIc5khPPMyeQg5YHTIGJWnN2dX10NOOQwBIOej8QbZ4SwXKedUbP7MTI4GZD_GGe1L9E8y3yYDEDTLIJM75O2-q1uX3mJosE4ug168J0XbYtM63yRTxEVSdK3HxvoSQ1L5kNy754cinbqIOmJSxOit09_4U8DS2eW4R7YqXUfcX_dd8npx_jK5Su8eL68nxV1qgfI2lWYMRgu0NgOmUUOJ3FgKzFAUUkjMcqM5tXpsuCilqEQOlen_S22GxpawS05WuYvgPzqMrZq7aLGudYO-i4oLKWHMcwk9evwPnfkuNP11iksOjAMH0VNsRdngYwxYqUVwcx0-FaNq6V0tvauld7X23u8crZM7M8fyd-PHcg8crgCHiH8CYZTlQsAXBSyGLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923123238</pqid></control><display><type>article</type><title>Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction</title><source>IEEE Xplore (Online service)</source><creator>Jiao, Cui-Na ; Zhou, Feng ; Liu, Bao-Min ; Zheng, Chun-Hou ; Liu, Jin-Xing ; Gao, Ying-Lian</creator><creatorcontrib>Jiao, Cui-Na ; Zhou, Feng ; Liu, Bao-Min ; Zheng, Chun-Hou ; Liu, Jin-Xing ; Gao, Ying-Lian</creatorcontrib><description>Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2023.3336247</identifier><identifier>PMID: 38055359</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Attention mechanism ; Bioinformatics ; Biological activity ; Computational Biology - methods ; Deep learning ; Disease ; Diseases ; graph convolution neural network ; Graphical representations ; Heterogeneous networks ; Humans ; Kernel ; Machine learning ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; miRNA-disease associations ; multiple kernel learning ; Neoplasms - genetics ; Predictive models ; Reliability ; Reproducibility of Results ; Similarity</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-02, Vol.28 (2), p.1110-1121</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3</cites><orcidid>0000-0002-1813-6411 ; 0000-0001-7479-8105 ; 0000-0002-2695-1926 ; 0000-0003-0483-5622 ; 0000-0001-9891-4115 ; 0000-0001-6104-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10345688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38055359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao, Cui-Na</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Liu, Bao-Min</creatorcontrib><creatorcontrib>Zheng, Chun-Hou</creatorcontrib><creatorcontrib>Liu, Jin-Xing</creatorcontrib><creatorcontrib>Gao, Ying-Lian</creatorcontrib><title>Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Attention mechanism</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Computational Biology - methods</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Diseases</subject><subject>graph convolution neural network</subject><subject>Graphical representations</subject><subject>Heterogeneous networks</subject><subject>Humans</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>miRNA-disease associations</subject><subject>multiple kernel learning</subject><subject>Neoplasms - genetics</subject><subject>Predictive models</subject><subject>Reliability</subject><subject>Reproducibility of Results</subject><subject>Similarity</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMorqg_QBApePHSNclsu8mx7vr9iajXkKRTzNJt1qQ9-O_tuquIc5khPPMyeQg5YHTIGJWnN2dX10NOOQwBIOej8QbZ4SwXKedUbP7MTI4GZD_GGe1L9E8y3yYDEDTLIJM75O2-q1uX3mJosE4ug168J0XbYtM63yRTxEVSdK3HxvoSQ1L5kNy754cinbqIOmJSxOit09_4U8DS2eW4R7YqXUfcX_dd8npx_jK5Su8eL68nxV1qgfI2lWYMRgu0NgOmUUOJ3FgKzFAUUkjMcqM5tXpsuCilqEQOlen_S22GxpawS05WuYvgPzqMrZq7aLGudYO-i4oLKWHMcwk9evwPnfkuNP11iksOjAMH0VNsRdngYwxYqUVwcx0-FaNq6V0tvauld7X23u8crZM7M8fyd-PHcg8crgCHiH8CYZTlQsAXBSyGLg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Jiao, Cui-Na</creator><creator>Zhou, Feng</creator><creator>Liu, Bao-Min</creator><creator>Zheng, Chun-Hou</creator><creator>Liu, Jin-Xing</creator><creator>Gao, Ying-Lian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1813-6411</orcidid><orcidid>https://orcid.org/0000-0001-7479-8105</orcidid><orcidid>https://orcid.org/0000-0002-2695-1926</orcidid><orcidid>https://orcid.org/0000-0003-0483-5622</orcidid><orcidid>https://orcid.org/0000-0001-9891-4115</orcidid><orcidid>https://orcid.org/0000-0001-6104-2149</orcidid></search><sort><creationdate>20240201</creationdate><title>Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction</title><author>Jiao, Cui-Na ; Zhou, Feng ; Liu, Bao-Min ; Zheng, Chun-Hou ; Liu, Jin-Xing ; Gao, Ying-Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Attention mechanism</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Computational Biology - methods</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Diseases</topic><topic>graph convolution neural network</topic><topic>Graphical representations</topic><topic>Heterogeneous networks</topic><topic>Humans</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>miRNA-disease associations</topic><topic>multiple kernel learning</topic><topic>Neoplasms - genetics</topic><topic>Predictive models</topic><topic>Reliability</topic><topic>Reproducibility of Results</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Cui-Na</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Liu, Bao-Min</creatorcontrib><creatorcontrib>Zheng, Chun-Hou</creatorcontrib><creatorcontrib>Liu, Jin-Xing</creatorcontrib><creatorcontrib>Gao, Ying-Lian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Cui-Na</au><au>Zhou, Feng</au><au>Liu, Bao-Min</au><au>Zheng, Chun-Hou</au><au>Liu, Jin-Xing</au><au>Gao, Ying-Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>1110</spage><epage>1121</epage><pages>1110-1121</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38055359</pmid><doi>10.1109/JBHI.2023.3336247</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1813-6411</orcidid><orcidid>https://orcid.org/0000-0001-7479-8105</orcidid><orcidid>https://orcid.org/0000-0002-2695-1926</orcidid><orcidid>https://orcid.org/0000-0003-0483-5622</orcidid><orcidid>https://orcid.org/0000-0001-9891-4115</orcidid><orcidid>https://orcid.org/0000-0001-6104-2149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-02, Vol.28 (2), p.1110-1121
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_proquest_miscellaneous_2899372693
source IEEE Xplore (Online service)
subjects Algorithms
Artificial neural networks
Attention mechanism
Bioinformatics
Biological activity
Computational Biology - methods
Deep learning
Disease
Diseases
graph convolution neural network
Graphical representations
Heterogeneous networks
Humans
Kernel
Machine learning
MicroRNAs
MicroRNAs - genetics
miRNA
miRNA-disease associations
multiple kernel learning
Neoplasms - genetics
Predictive models
Reliability
Reproducibility of Results
Similarity
title Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Kernel%20Graph%20Attention%20Deep%20Autoencoder%20for%20MiRNA-Disease%20Association%20Prediction&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Jiao,%20Cui-Na&rft.date=2024-02-01&rft.volume=28&rft.issue=2&rft.spage=1110&rft.epage=1121&rft.pages=1110-1121&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2023.3336247&rft_dat=%3Cproquest_ieee_%3E2899372693%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-9b73ba8ecc531aea3de2bc031b0e8989e56ba20ca7b28d98f863fb3330c5ebcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923123238&rft_id=info:pmid/38055359&rft_ieee_id=10345688&rfr_iscdi=true