Loading…
Patterning thin metallic film via laser structured weakly bound template
A weakly bound buffer material is structured on a surface by interfering low power laser beams, as a template for patterning metallic thin films deposited on top. The excess buffer material and metal layer are subsequently removed by a second uniform laser pulse. This laser pre-structured buffer lay...
Saved in:
Published in: | Surface science 2006-05, Vol.600 (10), p.2091-2095 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A weakly bound buffer material is structured on a surface by interfering low power laser beams, as a template for patterning metallic thin films deposited on top. The excess buffer material and metal layer are subsequently removed by a second uniform laser pulse. This laser pre-structured buffer layer assisted patterning procedure is demonstrated for gold layer forming a grating on a single crystal Ru(1
0
0) under UHV conditions, using Xe as the buffer material. Millimeters long, submicron (0.65
μm) wide wires can be obtained using laser wavelength of 1.064
μm with sharp edges of less than 30
nm, as determined by AFM. This method provides an all-in-vacuum metallic film patterning procedure at the submicron range, with the potential to be developed down to the nanometer scale upon decreasing the patterning laser wavelength down to the UV range. |
---|---|
ISSN: | 0039-6028 1879-2758 |
DOI: | 10.1016/j.susc.2006.02.040 |