Loading…
Radiative transfer model for microwave bistatic scattering from forest canopies
A bistatic forest scattering model is developed to simulate scattering coefficients from forest canopies. The model is based on the Michigan Microwave Canopy Scattering (MIMICS) model (hence called Bi-MIMICS) and uses radiative transfer theory, where the first-order fully polarimetric transformation...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2005-11, Vol.43 (11), p.2470-2483 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-8624aabc4d5903c979d80cf7dcd9f2a6286f02d4fd1f11ba43e0dd4aeb100a5c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-8624aabc4d5903c979d80cf7dcd9f2a6286f02d4fd1f11ba43e0dd4aeb100a5c3 |
container_end_page | 2483 |
container_issue | 11 |
container_start_page | 2470 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 43 |
creator | Pan Liang Pierce, L.E. Moghaddam, M. |
description | A bistatic forest scattering model is developed to simulate scattering coefficients from forest canopies. The model is based on the Michigan Microwave Canopy Scattering (MIMICS) model (hence called Bi-MIMICS) and uses radiative transfer theory, where the first-order fully polarimetric transformation matrix is used. Bistatic radar systems offer advantages over monostatic radar systems because of the additional information provided by the diversity of the geometry. By simulating the forest canopy scattering from multiple viewpoints, we can better understand how the forest scatterers' shape, orientation, density, and permittivity affect the canopy scattering. Bi-MIMICS is parametrized using selected forest stands with different canopy compositions and structure. The simulation results show that bistatic scattering is more sensitive to forest biomass changes than backscattering. Analyzing scattering contributions from different parts of the canopy gives us a better understanding of the microwave's interaction with the tree components. The ground effects can also be studied. Knowledge of the canopy's bistatic scattering behavior combined with additional synthetic aperture radar measurements can be used to improve forest parameter retrievals. The simulation results of the model provide the required information for the design of future bistatic radar systems for forest sensing applications. |
doi_str_mv | 10.1109/TGRS.2005.853926 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_29018658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1522608</ieee_id><sourcerecordid>29018658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-8624aabc4d5903c979d80cf7dcd9f2a6286f02d4fd1f11ba43e0dd4aeb100a5c3</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AgCq6Pu-ClCOqp6yRN0uQoiy9YWFj1HNI8JNJt16Sr-O3NUkHwoKcE5jdDMn-ETjBMMQZ59XS3fJwSADYVrJKE76AJZkyUwCndRRPAkpdESLKPDlJ6BcCU4XqCFkttgx7CuyuGqLvkXSxWvXVt4ft8Cyb2HzoXm5CGzEyRjB4GF0P3UvjYr7bMpaEwuuvXwaUjtOd1m9zx93mInm9vnmb35Xxx9zC7npeGYjqUghOqdWOoZRIqI2tpBRhfW2OlJ5oTwT0QS73FHuNG08qBtVS7BgNoZqpDdDnOXcf-bZNfoFYhGde2unP9JikhOclrqFmWF39KIgELzsT_UEBWAjI8-wVf-03s8neV4DXnOY4qIxhR3mBK0Xm1jmGl46fCoLaJqW1iapuYGhPLLeffc3XecutzHiakn76aMMokzu50dME591NmhHAQ1Rflep9N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867661093</pqid></control><display><type>article</type><title>Radiative transfer model for microwave bistatic scattering from forest canopies</title><source>IEEE Xplore (Online service)</source><creator>Pan Liang ; Pierce, L.E. ; Moghaddam, M.</creator><creatorcontrib>Pan Liang ; Pierce, L.E. ; Moghaddam, M.</creatorcontrib><description>A bistatic forest scattering model is developed to simulate scattering coefficients from forest canopies. The model is based on the Michigan Microwave Canopy Scattering (MIMICS) model (hence called Bi-MIMICS) and uses radiative transfer theory, where the first-order fully polarimetric transformation matrix is used. Bistatic radar systems offer advantages over monostatic radar systems because of the additional information provided by the diversity of the geometry. By simulating the forest canopy scattering from multiple viewpoints, we can better understand how the forest scatterers' shape, orientation, density, and permittivity affect the canopy scattering. Bi-MIMICS is parametrized using selected forest stands with different canopy compositions and structure. The simulation results show that bistatic scattering is more sensitive to forest biomass changes than backscattering. Analyzing scattering contributions from different parts of the canopy gives us a better understanding of the microwave's interaction with the tree components. The ground effects can also be studied. Knowledge of the canopy's bistatic scattering behavior combined with additional synthetic aperture radar measurements can be used to improve forest parameter retrievals. The simulation results of the model provide the required information for the design of future bistatic radar systems for forest sensing applications.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2005.853926</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Backscatter ; Biological and medical sciences ; Biomass ; Bistatic radar ; Bistatic scattering ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; forest scattering ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Information geometry ; Internal geophysics ; Microwave theory and techniques ; Permittivity ; Radar polarimetry ; Radar scattering ; Radar systems ; radiative transfer ; Scattering parameters ; Shape ; synthetic aperture radar (SAR) ; Teledetection and vegetation maps</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2005-11, Vol.43 (11), p.2470-2483</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-8624aabc4d5903c979d80cf7dcd9f2a6286f02d4fd1f11ba43e0dd4aeb100a5c3</citedby><cites>FETCH-LOGICAL-c414t-8624aabc4d5903c979d80cf7dcd9f2a6286f02d4fd1f11ba43e0dd4aeb100a5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1522608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17254591$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan Liang</creatorcontrib><creatorcontrib>Pierce, L.E.</creatorcontrib><creatorcontrib>Moghaddam, M.</creatorcontrib><title>Radiative transfer model for microwave bistatic scattering from forest canopies</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A bistatic forest scattering model is developed to simulate scattering coefficients from forest canopies. The model is based on the Michigan Microwave Canopy Scattering (MIMICS) model (hence called Bi-MIMICS) and uses radiative transfer theory, where the first-order fully polarimetric transformation matrix is used. Bistatic radar systems offer advantages over monostatic radar systems because of the additional information provided by the diversity of the geometry. By simulating the forest canopy scattering from multiple viewpoints, we can better understand how the forest scatterers' shape, orientation, density, and permittivity affect the canopy scattering. Bi-MIMICS is parametrized using selected forest stands with different canopy compositions and structure. The simulation results show that bistatic scattering is more sensitive to forest biomass changes than backscattering. Analyzing scattering contributions from different parts of the canopy gives us a better understanding of the microwave's interaction with the tree components. The ground effects can also be studied. Knowledge of the canopy's bistatic scattering behavior combined with additional synthetic aperture radar measurements can be used to improve forest parameter retrievals. The simulation results of the model provide the required information for the design of future bistatic radar systems for forest sensing applications.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Backscatter</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Bistatic radar</subject><subject>Bistatic scattering</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>forest scattering</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Information geometry</subject><subject>Internal geophysics</subject><subject>Microwave theory and techniques</subject><subject>Permittivity</subject><subject>Radar polarimetry</subject><subject>Radar scattering</subject><subject>Radar systems</subject><subject>radiative transfer</subject><subject>Scattering parameters</subject><subject>Shape</subject><subject>synthetic aperture radar (SAR)</subject><subject>Teledetection and vegetation maps</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLxDAQB_AgCq6Pu-ClCOqp6yRN0uQoiy9YWFj1HNI8JNJt16Sr-O3NUkHwoKcE5jdDMn-ETjBMMQZ59XS3fJwSADYVrJKE76AJZkyUwCndRRPAkpdESLKPDlJ6BcCU4XqCFkttgx7CuyuGqLvkXSxWvXVt4ft8Cyb2HzoXm5CGzEyRjB4GF0P3UvjYr7bMpaEwuuvXwaUjtOd1m9zx93mInm9vnmb35Xxx9zC7npeGYjqUghOqdWOoZRIqI2tpBRhfW2OlJ5oTwT0QS73FHuNG08qBtVS7BgNoZqpDdDnOXcf-bZNfoFYhGde2unP9JikhOclrqFmWF39KIgELzsT_UEBWAjI8-wVf-03s8neV4DXnOY4qIxhR3mBK0Xm1jmGl46fCoLaJqW1iapuYGhPLLeffc3XecutzHiakn76aMMokzu50dME591NmhHAQ1Rflep9N</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Pan Liang</creator><creator>Pierce, L.E.</creator><creator>Moghaddam, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7U5</scope><scope>7T7</scope><scope>P64</scope></search><sort><creationdate>20051101</creationdate><title>Radiative transfer model for microwave bistatic scattering from forest canopies</title><author>Pan Liang ; Pierce, L.E. ; Moghaddam, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-8624aabc4d5903c979d80cf7dcd9f2a6286f02d4fd1f11ba43e0dd4aeb100a5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Backscatter</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Bistatic radar</topic><topic>Bistatic scattering</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>forest scattering</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Information geometry</topic><topic>Internal geophysics</topic><topic>Microwave theory and techniques</topic><topic>Permittivity</topic><topic>Radar polarimetry</topic><topic>Radar scattering</topic><topic>Radar systems</topic><topic>radiative transfer</topic><topic>Scattering parameters</topic><topic>Shape</topic><topic>synthetic aperture radar (SAR)</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan Liang</creatorcontrib><creatorcontrib>Pierce, L.E.</creatorcontrib><creatorcontrib>Moghaddam, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan Liang</au><au>Pierce, L.E.</au><au>Moghaddam, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative transfer model for microwave bistatic scattering from forest canopies</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2005-11-01</date><risdate>2005</risdate><volume>43</volume><issue>11</issue><spage>2470</spage><epage>2483</epage><pages>2470-2483</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A bistatic forest scattering model is developed to simulate scattering coefficients from forest canopies. The model is based on the Michigan Microwave Canopy Scattering (MIMICS) model (hence called Bi-MIMICS) and uses radiative transfer theory, where the first-order fully polarimetric transformation matrix is used. Bistatic radar systems offer advantages over monostatic radar systems because of the additional information provided by the diversity of the geometry. By simulating the forest canopy scattering from multiple viewpoints, we can better understand how the forest scatterers' shape, orientation, density, and permittivity affect the canopy scattering. Bi-MIMICS is parametrized using selected forest stands with different canopy compositions and structure. The simulation results show that bistatic scattering is more sensitive to forest biomass changes than backscattering. Analyzing scattering contributions from different parts of the canopy gives us a better understanding of the microwave's interaction with the tree components. The ground effects can also be studied. Knowledge of the canopy's bistatic scattering behavior combined with additional synthetic aperture radar measurements can be used to improve forest parameter retrievals. The simulation results of the model provide the required information for the design of future bistatic radar systems for forest sensing applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2005.853926</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2005-11, Vol.43 (11), p.2470-2483 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_29018658 |
source | IEEE Xplore (Online service) |
subjects | Animal, plant and microbial ecology Applied geophysics Backscatter Biological and medical sciences Biomass Bistatic radar Bistatic scattering Earth sciences Earth, ocean, space Exact sciences and technology forest scattering Fundamental and applied biological sciences. Psychology General aspects. Techniques Information geometry Internal geophysics Microwave theory and techniques Permittivity Radar polarimetry Radar scattering Radar systems radiative transfer Scattering parameters Shape synthetic aperture radar (SAR) Teledetection and vegetation maps |
title | Radiative transfer model for microwave bistatic scattering from forest canopies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20transfer%20model%20for%20microwave%20bistatic%20scattering%20from%20forest%20canopies&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Pan%20Liang&rft.date=2005-11-01&rft.volume=43&rft.issue=11&rft.spage=2470&rft.epage=2483&rft.pages=2470-2483&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2005.853926&rft_dat=%3Cproquest_ieee_%3E29018658%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-8624aabc4d5903c979d80cf7dcd9f2a6286f02d4fd1f11ba43e0dd4aeb100a5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867661093&rft_id=info:pmid/&rft_ieee_id=1522608&rfr_iscdi=true |