Loading…
Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation
Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory G...
Saved in:
Published in: | Psychometrika 2024-06, Vol.89 (2), p.411-438 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53 |
container_end_page | 438 |
container_issue | 2 |
container_start_page | 411 |
container_title | Psychometrika |
container_volume | 89 |
creator | Yamashita, Naoto |
description | Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration. |
doi_str_mv | 10.1007/s11336-023-09942-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902943552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902943552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53</originalsourceid><addsrcrecordid>eNp9kc1O3DAUha2qFQy0L9BFFambbgLXdq7jLGE0BSRQq9KuLcdxUFASB_9IzNuTmQCVWLCyrv2d46N7CPlK4YQClKeBUs5FDoznUFUFy_EDWVEpYB4lfCQrAM5zThk_JEch3ANARaU8IIdcgsQCixWJm8epd15H57fZb--MbZK3Wet8tnbD5EY7xvxcB9tkt9EnE5PXfbZ5SDp2bsxuXGP7brzbC267YertK2ezeru7S33Uo3UpZH9c3Ms-k0-t7oP98nwek38_N3_Xl_n1r4ur9dl1bniJMS8aLrVsjDWCtZLSupJFKWvUCIiCNQVWJUUqWGkEUuRWz-vgLUItuClb5Mfkx-I7efeQbIhq6IKxfb_kUawCVhUckc3o9zfovUt-nNMpDkJQgQjlTLGFMt6F4G2rJt8N2m8VBbXrRC2dqLkTte9E7VJ8e7ZO9WCbV8lLCTPAFyDMT-Od9f__fsf2CZ89l4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066165507</pqid></control><display><type>article</type><title>Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation</title><source>Springer Nature</source><creator>Yamashita, Naoto</creator><creatorcontrib>Yamashita, Naoto</creatorcontrib><description>Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.</description><identifier>ISSN: 0033-3123</identifier><identifier>ISSN: 1860-0980</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-023-09942-5</identifier><identifier>PMID: 38085454</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Assessment ; Behavioral Science and Psychology ; Computer Simulation ; Factor Analysis ; Factor Analysis, Statistical ; Humanities ; Humans ; Latent Class Analysis ; Law ; Mathematical models ; Models, Statistical ; Psychology ; Psychometrics ; Psychometrics - methods ; Rotation ; Statistical Theory and Methods ; Statistics for Social Sciences ; Structural equation modeling ; Structural Equation Models ; Testing and Evaluation ; Theory and Methods</subject><ispartof>Psychometrika, 2024-06, Vol.89 (2), p.411-438</ispartof><rights>The Author(s), under exclusive licence to The Psychometric Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to The Psychometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53</citedby><cites>FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53</cites><orcidid>0000-0002-8819-4262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38085454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamashita, Naoto</creatorcontrib><title>Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.</description><subject>Algorithms</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Computer Simulation</subject><subject>Factor Analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Humanities</subject><subject>Humans</subject><subject>Latent Class Analysis</subject><subject>Law</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Psychometrics - methods</subject><subject>Rotation</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Structural equation modeling</subject><subject>Structural Equation Models</subject><subject>Testing and Evaluation</subject><subject>Theory and Methods</subject><issn>0033-3123</issn><issn>1860-0980</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAUha2qFQy0L9BFFambbgLXdq7jLGE0BSRQq9KuLcdxUFASB_9IzNuTmQCVWLCyrv2d46N7CPlK4YQClKeBUs5FDoznUFUFy_EDWVEpYB4lfCQrAM5zThk_JEch3ANARaU8IIdcgsQCixWJm8epd15H57fZb--MbZK3Wet8tnbD5EY7xvxcB9tkt9EnE5PXfbZ5SDp2bsxuXGP7brzbC267YertK2ezeru7S33Uo3UpZH9c3Ms-k0-t7oP98nwek38_N3_Xl_n1r4ur9dl1bniJMS8aLrVsjDWCtZLSupJFKWvUCIiCNQVWJUUqWGkEUuRWz-vgLUItuClb5Mfkx-I7efeQbIhq6IKxfb_kUawCVhUckc3o9zfovUt-nNMpDkJQgQjlTLGFMt6F4G2rJt8N2m8VBbXrRC2dqLkTte9E7VJ8e7ZO9WCbV8lLCTPAFyDMT-Od9f__fsf2CZ89l4E</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yamashita, Naoto</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8819-4262</orcidid></search><sort><creationdate>20240601</creationdate><title>Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation</title><author>Yamashita, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Computer Simulation</topic><topic>Factor Analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Humanities</topic><topic>Humans</topic><topic>Latent Class Analysis</topic><topic>Law</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Psychometrics - methods</topic><topic>Rotation</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Structural equation modeling</topic><topic>Structural Equation Models</topic><topic>Testing and Evaluation</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Naoto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>89</volume><issue>2</issue><spage>411</spage><epage>438</epage><pages>411-438</pages><issn>0033-3123</issn><issn>1860-0980</issn><eissn>1860-0980</eissn><abstract>Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38085454</pmid><doi>10.1007/s11336-023-09942-5</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-8819-4262</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 2024-06, Vol.89 (2), p.411-438 |
issn | 0033-3123 1860-0980 1860-0980 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902943552 |
source | Springer Nature |
subjects | Algorithms Assessment Behavioral Science and Psychology Computer Simulation Factor Analysis Factor Analysis, Statistical Humanities Humans Latent Class Analysis Law Mathematical models Models, Statistical Psychology Psychometrics Psychometrics - methods Rotation Statistical Theory and Methods Statistics for Social Sciences Structural equation modeling Structural Equation Models Testing and Evaluation Theory and Methods |
title | Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploratory%20Procedure%20for%20Component-Based%20Structural%20Equation%20Modeling%20for%20Simple%20Structure%20by%20Simultaneous%20Rotation&rft.jtitle=Psychometrika&rft.au=Yamashita,%20Naoto&rft.date=2024-06-01&rft.volume=89&rft.issue=2&rft.spage=411&rft.epage=438&rft.pages=411-438&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-023-09942-5&rft_dat=%3Cproquest_cross%3E2902943552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066165507&rft_id=info:pmid/38085454&rfr_iscdi=true |