Loading…

Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation

Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory G...

Full description

Saved in:
Bibliographic Details
Published in:Psychometrika 2024-06, Vol.89 (2), p.411-438
Main Author: Yamashita, Naoto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53
cites cdi_FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53
container_end_page 438
container_issue 2
container_start_page 411
container_title Psychometrika
container_volume 89
creator Yamashita, Naoto
description Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.
doi_str_mv 10.1007/s11336-023-09942-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902943552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902943552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53</originalsourceid><addsrcrecordid>eNp9kc1O3DAUha2qFQy0L9BFFambbgLXdq7jLGE0BSRQq9KuLcdxUFASB_9IzNuTmQCVWLCyrv2d46N7CPlK4YQClKeBUs5FDoznUFUFy_EDWVEpYB4lfCQrAM5zThk_JEch3ANARaU8IIdcgsQCixWJm8epd15H57fZb--MbZK3Wet8tnbD5EY7xvxcB9tkt9EnE5PXfbZ5SDp2bsxuXGP7brzbC267YertK2ezeru7S33Uo3UpZH9c3Ms-k0-t7oP98nwek38_N3_Xl_n1r4ur9dl1bniJMS8aLrVsjDWCtZLSupJFKWvUCIiCNQVWJUUqWGkEUuRWz-vgLUItuClb5Mfkx-I7efeQbIhq6IKxfb_kUawCVhUckc3o9zfovUt-nNMpDkJQgQjlTLGFMt6F4G2rJt8N2m8VBbXrRC2dqLkTte9E7VJ8e7ZO9WCbV8lLCTPAFyDMT-Od9f__fsf2CZ89l4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066165507</pqid></control><display><type>article</type><title>Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation</title><source>Springer Nature</source><creator>Yamashita, Naoto</creator><creatorcontrib>Yamashita, Naoto</creatorcontrib><description>Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.</description><identifier>ISSN: 0033-3123</identifier><identifier>ISSN: 1860-0980</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-023-09942-5</identifier><identifier>PMID: 38085454</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Assessment ; Behavioral Science and Psychology ; Computer Simulation ; Factor Analysis ; Factor Analysis, Statistical ; Humanities ; Humans ; Latent Class Analysis ; Law ; Mathematical models ; Models, Statistical ; Psychology ; Psychometrics ; Psychometrics - methods ; Rotation ; Statistical Theory and Methods ; Statistics for Social Sciences ; Structural equation modeling ; Structural Equation Models ; Testing and Evaluation ; Theory and Methods</subject><ispartof>Psychometrika, 2024-06, Vol.89 (2), p.411-438</ispartof><rights>The Author(s), under exclusive licence to The Psychometric Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to The Psychometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53</citedby><cites>FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53</cites><orcidid>0000-0002-8819-4262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38085454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamashita, Naoto</creatorcontrib><title>Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.</description><subject>Algorithms</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Computer Simulation</subject><subject>Factor Analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Humanities</subject><subject>Humans</subject><subject>Latent Class Analysis</subject><subject>Law</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Psychometrics - methods</subject><subject>Rotation</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Structural equation modeling</subject><subject>Structural Equation Models</subject><subject>Testing and Evaluation</subject><subject>Theory and Methods</subject><issn>0033-3123</issn><issn>1860-0980</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAUha2qFQy0L9BFFambbgLXdq7jLGE0BSRQq9KuLcdxUFASB_9IzNuTmQCVWLCyrv2d46N7CPlK4YQClKeBUs5FDoznUFUFy_EDWVEpYB4lfCQrAM5zThk_JEch3ANARaU8IIdcgsQCixWJm8epd15H57fZb--MbZK3Wet8tnbD5EY7xvxcB9tkt9EnE5PXfbZ5SDp2bsxuXGP7brzbC267YertK2ezeru7S33Uo3UpZH9c3Ms-k0-t7oP98nwek38_N3_Xl_n1r4ur9dl1bniJMS8aLrVsjDWCtZLSupJFKWvUCIiCNQVWJUUqWGkEUuRWz-vgLUItuClb5Mfkx-I7efeQbIhq6IKxfb_kUawCVhUckc3o9zfovUt-nNMpDkJQgQjlTLGFMt6F4G2rJt8N2m8VBbXrRC2dqLkTte9E7VJ8e7ZO9WCbV8lLCTPAFyDMT-Od9f__fsf2CZ89l4E</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yamashita, Naoto</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8819-4262</orcidid></search><sort><creationdate>20240601</creationdate><title>Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation</title><author>Yamashita, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Computer Simulation</topic><topic>Factor Analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Humanities</topic><topic>Humans</topic><topic>Latent Class Analysis</topic><topic>Law</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Psychometrics - methods</topic><topic>Rotation</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Structural equation modeling</topic><topic>Structural Equation Models</topic><topic>Testing and Evaluation</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Naoto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>89</volume><issue>2</issue><spage>411</spage><epage>438</epage><pages>411-438</pages><issn>0033-3123</issn><issn>1860-0980</issn><eissn>1860-0980</eissn><abstract>Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38085454</pmid><doi>10.1007/s11336-023-09942-5</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-8819-4262</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2024-06, Vol.89 (2), p.411-438
issn 0033-3123
1860-0980
1860-0980
language eng
recordid cdi_proquest_miscellaneous_2902943552
source Springer Nature
subjects Algorithms
Assessment
Behavioral Science and Psychology
Computer Simulation
Factor Analysis
Factor Analysis, Statistical
Humanities
Humans
Latent Class Analysis
Law
Mathematical models
Models, Statistical
Psychology
Psychometrics
Psychometrics - methods
Rotation
Statistical Theory and Methods
Statistics for Social Sciences
Structural equation modeling
Structural Equation Models
Testing and Evaluation
Theory and Methods
title Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploratory%20Procedure%20for%20Component-Based%20Structural%20Equation%20Modeling%20for%20Simple%20Structure%20by%20Simultaneous%20Rotation&rft.jtitle=Psychometrika&rft.au=Yamashita,%20Naoto&rft.date=2024-06-01&rft.volume=89&rft.issue=2&rft.spage=411&rft.epage=438&rft.pages=411-438&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-023-09942-5&rft_dat=%3Cproquest_cross%3E2902943552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-4d38a8dcec62f811b98478b5a505562d4597151627c65153ea3363f50b63c7f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066165507&rft_id=info:pmid/38085454&rfr_iscdi=true