Loading…
Electrosprayed zein nanoparticles as antibacterial and anti-thrombotic coatings for ureteral stents
Ureteral stents are among the most frequently used human implants, with urothelium trauma, blood clots, and bacterial colonization being their main reasons for failure. In this study, berberine-loaded zein (ZB) nanoparticles with high drug encapsulation efficiency (>90 %) were fabricated via elec...
Saved in:
Published in: | International journal of biological macromolecules 2024-02, Vol.257, p.128560-128560, Article 128560 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ureteral stents are among the most frequently used human implants, with urothelium trauma, blood clots, and bacterial colonization being their main reasons for failure. In this study, berberine-loaded zein (ZB) nanoparticles with high drug encapsulation efficiency (>90 %) were fabricated via electrospray on flat and 3D stainless steel structures. Physico-chemical characterization revealed that the ZB nanoparticles created a highly hydrophilic, antioxidant, and scratch-resistant continuous coating over the metal structure. Results showed that the drug release rate was faster at neutral pH (i.e., PBS pH 7.4) than in an artificial urine medium (pH 5.3) due to the different swelling behavior of the zein polymeric matrix. In vitro evaluation of ZB particles onto human dermal fibroblasts and blood cells demonstrated good cell proliferation and enhanced anti-thrombotic properties compared to bare stainless steel. The ability of the electrosprayed zein particles to resist bacterial adherence and proliferation was evaluated with Gram-negative (Escherichia coli) bacteria, showing high inhibition rates (-29 % and -46 % for empty and berberine-loaded particles, respectively) compared to the medical-grade metal substrates. Overall, the proposed composite coating fulfilled the requirements for ureteral applications, and can advance the development of innovative biocompatible, biodegradable, and antibacterial coatings for drug-eluting stents. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.128560 |