Loading…

An overview of mild traumatic brain injuries and emerging therapeutic targets

The majority of traumatic brain injuries (TBIs), approximately 90%, are classified as mild (mTBIs). Globally, an estimated 4 million injuries occur each year from concussions or mTBIs, highlighting their significance as a public health crisis. TBIs can lead to substantial long-term health consequenc...

Full description

Saved in:
Bibliographic Details
Published in:Neurochemistry international 2024-01, Vol.172, p.105655-105655, Article 105655
Main Authors: Bielanin, John P, Metwally, Shamseldin A H, Paruchuri, Satya S, Sun, Dandan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The majority of traumatic brain injuries (TBIs), approximately 90%, are classified as mild (mTBIs). Globally, an estimated 4 million injuries occur each year from concussions or mTBIs, highlighting their significance as a public health crisis. TBIs can lead to substantial long-term health consequences, including an increased risk of developing Alzheimer's Disease, Parkinson's Disease (PD), chronic traumatic encephalopathy (CTE), and nearly doubling one's risk of suicide. However, the current management of mTBIs in clinical practice and the available treatment options are limited. There exists an unmet need for effective therapy. This review addresses various aspects of mTBIs based on the most up-to-date literature review, with the goal of stimulating translational research to identify new therapeutic targets and improve our understanding of pathogenic mechanisms. First, we provide a summary of mTBI symptomatology and current diagnostic parameters such as the Glasgow Coma Scale (GCS) for classifying mTBIs or concussions, as well as the utility of alternative diagnostic parameters, including imaging techniques like MRI with diffusion tensor imaging (DTI) and serum biomarkers such as S100B, NSE, GFAP, UCH-L1, NFL, and t-tau. Our review highlights several pre-clinical concussion models employed in the study of mTBIs and the underlying cellular mechanisms involved in mTBI-related pathogenesis, including axonal damage, demyelination, inflammation, and oxidative stress. Finally, we examine a selection of new therapeutic targets currently under investigation in pre-clinical models. These targets may hold promise for clinical translation and address the pressing need for more effective treatments for mTBIs.
ISSN:0197-0186
1872-9754
DOI:10.1016/j.neuint.2023.105655