Loading…
Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators
Silicon nitride (Si N ) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, b...
Saved in:
Published in: | Optics express 2023-12, Vol.31 (25), p.41420-41427 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463 |
container_end_page | 41427 |
container_issue | 25 |
container_start_page | 41420 |
container_title | Optics express |
container_volume | 31 |
creator | Zhang, Yaojing Zhang, Shuangyou Bi, Toby Del'Haye, Pascal |
description | Silicon nitride (Si
N
) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si
N
devices requires thick (>600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si
N
(>400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si
N
films ( |
doi_str_mv | 10.1364/OE.503637 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902959711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902959711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMotlYX_gGZpS6mJk0mj6VIrUKhG906ZPLA6GRSk8yi_nojreLmPs79OFwOAJcIzhGm5HaznDcQU8yOwBRBQWoCOTv-N0_AWUrvECLCBDsFE8yL2BA0Ba8rE7zJcVeFbXbefcnswlDZECst40eVQu9yEVTwXarcUOW3UvzYFzhoUyXXO1Xug8vRld07FUM0KQwyh5jOwYmVfTIXhz4DLw_L5_vHer1ZPd3frWu14DDXRCGBkaa4o4Y2lgsidMdl1yFiodWGYk4RUdogYxE3TEPLFOFKKmqtJBTPwPXedxvD52hSbr1LyvS9HEwYU7sQcCEawRAq6M0eLY-mFI1tt9F5GXctgu1PnO1m2e7jLOzVwXbsvNF_5G9--BtwfXI1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902959711</pqid></control><display><type>article</type><title>Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators</title><source>EZB Electronic Journals Library</source><creator>Zhang, Yaojing ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</creator><creatorcontrib>Zhang, Yaojing ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</creatorcontrib><description>Silicon nitride (Si
N
) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si
N
devices requires thick (>600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si
N
(>400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si
N
films (<400 nm) provide the advantage of one-step deposition and are widely applied for commercial use. Here, we provide insights into engineering an integrated Si
N
structure that achieves optimal effective nonlinearity and maintains a compact footprint. A comparative analysis of Si
N
resonators with varying waveguide thicknesses is conducted and reveals that a 400-nm thin Si
N
film emerges as a promising solution that strikes a balance among the aforementioned criteria. Based on a commercially available 400-nm Si
N
film, we experimentally demonstrate the generation of low-noise coherent dark pulses with a repetition rate of 25 GHz in a multimode Si
N
resonator. The compact spiral-shaped resonator has a footprint of 0.28 mm
with a high-quality factor of 4 × 10
. Our demonstrated dark combs with mode spacings of tens of GHz have applications in microwave photonics, optical spectroscopy, and telecommunication systems.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.503637</identifier><identifier>PMID: 38087541</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2023-12, Vol.31 (25), p.41420-41427</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463</cites><orcidid>0000-0002-2663-0188 ; 0000-0001-5670-6115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38087541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yaojing</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><title>Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Silicon nitride (Si
N
) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si
N
devices requires thick (>600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si
N
(>400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si
N
films (<400 nm) provide the advantage of one-step deposition and are widely applied for commercial use. Here, we provide insights into engineering an integrated Si
N
structure that achieves optimal effective nonlinearity and maintains a compact footprint. A comparative analysis of Si
N
resonators with varying waveguide thicknesses is conducted and reveals that a 400-nm thin Si
N
film emerges as a promising solution that strikes a balance among the aforementioned criteria. Based on a commercially available 400-nm Si
N
film, we experimentally demonstrate the generation of low-noise coherent dark pulses with a repetition rate of 25 GHz in a multimode Si
N
resonator. The compact spiral-shaped resonator has a footprint of 0.28 mm
with a high-quality factor of 4 × 10
. Our demonstrated dark combs with mode spacings of tens of GHz have applications in microwave photonics, optical spectroscopy, and telecommunication systems.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMotlYX_gGZpS6mJk0mj6VIrUKhG906ZPLA6GRSk8yi_nojreLmPs79OFwOAJcIzhGm5HaznDcQU8yOwBRBQWoCOTv-N0_AWUrvECLCBDsFE8yL2BA0Ba8rE7zJcVeFbXbefcnswlDZECst40eVQu9yEVTwXarcUOW3UvzYFzhoUyXXO1Xug8vRld07FUM0KQwyh5jOwYmVfTIXhz4DLw_L5_vHer1ZPd3frWu14DDXRCGBkaa4o4Y2lgsidMdl1yFiodWGYk4RUdogYxE3TEPLFOFKKmqtJBTPwPXedxvD52hSbr1LyvS9HEwYU7sQcCEawRAq6M0eLY-mFI1tt9F5GXctgu1PnO1m2e7jLOzVwXbsvNF_5G9--BtwfXI1</recordid><startdate>20231204</startdate><enddate>20231204</enddate><creator>Zhang, Yaojing</creator><creator>Zhang, Shuangyou</creator><creator>Bi, Toby</creator><creator>Del'Haye, Pascal</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2663-0188</orcidid><orcidid>https://orcid.org/0000-0001-5670-6115</orcidid></search><sort><creationdate>20231204</creationdate><title>Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators</title><author>Zhang, Yaojing ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yaojing</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yaojing</au><au>Zhang, Shuangyou</au><au>Bi, Toby</au><au>Del'Haye, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2023-12-04</date><risdate>2023</risdate><volume>31</volume><issue>25</issue><spage>41420</spage><epage>41427</epage><pages>41420-41427</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Silicon nitride (Si
N
) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si
N
devices requires thick (>600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si
N
(>400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si
N
films (<400 nm) provide the advantage of one-step deposition and are widely applied for commercial use. Here, we provide insights into engineering an integrated Si
N
structure that achieves optimal effective nonlinearity and maintains a compact footprint. A comparative analysis of Si
N
resonators with varying waveguide thicknesses is conducted and reveals that a 400-nm thin Si
N
film emerges as a promising solution that strikes a balance among the aforementioned criteria. Based on a commercially available 400-nm Si
N
film, we experimentally demonstrate the generation of low-noise coherent dark pulses with a repetition rate of 25 GHz in a multimode Si
N
resonator. The compact spiral-shaped resonator has a footprint of 0.28 mm
with a high-quality factor of 4 × 10
. Our demonstrated dark combs with mode spacings of tens of GHz have applications in microwave photonics, optical spectroscopy, and telecommunication systems.</abstract><cop>United States</cop><pmid>38087541</pmid><doi>10.1364/OE.503637</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2663-0188</orcidid><orcidid>https://orcid.org/0000-0001-5670-6115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2023-12, Vol.31 (25), p.41420-41427 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902959711 |
source | EZB Electronic Journals Library |
title | Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20optimization%20for%20dark%20soliton%20combs%20in%20thin%20multimode%20silicon%20nitride%20microresonators&rft.jtitle=Optics%20express&rft.au=Zhang,%20Yaojing&rft.date=2023-12-04&rft.volume=31&rft.issue=25&rft.spage=41420&rft.epage=41427&rft.pages=41420-41427&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.503637&rft_dat=%3Cproquest_cross%3E2902959711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902959711&rft_id=info:pmid/38087541&rfr_iscdi=true |