Loading…

Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators

Silicon nitride (Si N ) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, b...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2023-12, Vol.31 (25), p.41420-41427
Main Authors: Zhang, Yaojing, Zhang, Shuangyou, Bi, Toby, Del'Haye, Pascal
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463
container_end_page 41427
container_issue 25
container_start_page 41420
container_title Optics express
container_volume 31
creator Zhang, Yaojing
Zhang, Shuangyou
Bi, Toby
Del'Haye, Pascal
description Silicon nitride (Si N ) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si N devices requires thick (>600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si N (>400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si N films (
doi_str_mv 10.1364/OE.503637
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902959711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902959711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMotlYX_gGZpS6mJk0mj6VIrUKhG906ZPLA6GRSk8yi_nojreLmPs79OFwOAJcIzhGm5HaznDcQU8yOwBRBQWoCOTv-N0_AWUrvECLCBDsFE8yL2BA0Ba8rE7zJcVeFbXbefcnswlDZECst40eVQu9yEVTwXarcUOW3UvzYFzhoUyXXO1Xug8vRld07FUM0KQwyh5jOwYmVfTIXhz4DLw_L5_vHer1ZPd3frWu14DDXRCGBkaa4o4Y2lgsidMdl1yFiodWGYk4RUdogYxE3TEPLFOFKKmqtJBTPwPXedxvD52hSbr1LyvS9HEwYU7sQcCEawRAq6M0eLY-mFI1tt9F5GXctgu1PnO1m2e7jLOzVwXbsvNF_5G9--BtwfXI1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902959711</pqid></control><display><type>article</type><title>Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators</title><source>EZB Electronic Journals Library</source><creator>Zhang, Yaojing ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</creator><creatorcontrib>Zhang, Yaojing ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</creatorcontrib><description>Silicon nitride (Si N ) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si N devices requires thick (&gt;600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si N (&gt;400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si N films (&lt;400 nm) provide the advantage of one-step deposition and are widely applied for commercial use. Here, we provide insights into engineering an integrated Si N structure that achieves optimal effective nonlinearity and maintains a compact footprint. A comparative analysis of Si N resonators with varying waveguide thicknesses is conducted and reveals that a 400-nm thin Si N film emerges as a promising solution that strikes a balance among the aforementioned criteria. Based on a commercially available 400-nm Si N film, we experimentally demonstrate the generation of low-noise coherent dark pulses with a repetition rate of 25 GHz in a multimode Si N resonator. The compact spiral-shaped resonator has a footprint of 0.28 mm with a high-quality factor of 4 × 10 . Our demonstrated dark combs with mode spacings of tens of GHz have applications in microwave photonics, optical spectroscopy, and telecommunication systems.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.503637</identifier><identifier>PMID: 38087541</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2023-12, Vol.31 (25), p.41420-41427</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463</cites><orcidid>0000-0002-2663-0188 ; 0000-0001-5670-6115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38087541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yaojing</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><title>Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Silicon nitride (Si N ) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si N devices requires thick (&gt;600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si N (&gt;400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si N films (&lt;400 nm) provide the advantage of one-step deposition and are widely applied for commercial use. Here, we provide insights into engineering an integrated Si N structure that achieves optimal effective nonlinearity and maintains a compact footprint. A comparative analysis of Si N resonators with varying waveguide thicknesses is conducted and reveals that a 400-nm thin Si N film emerges as a promising solution that strikes a balance among the aforementioned criteria. Based on a commercially available 400-nm Si N film, we experimentally demonstrate the generation of low-noise coherent dark pulses with a repetition rate of 25 GHz in a multimode Si N resonator. The compact spiral-shaped resonator has a footprint of 0.28 mm with a high-quality factor of 4 × 10 . Our demonstrated dark combs with mode spacings of tens of GHz have applications in microwave photonics, optical spectroscopy, and telecommunication systems.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMotlYX_gGZpS6mJk0mj6VIrUKhG906ZPLA6GRSk8yi_nojreLmPs79OFwOAJcIzhGm5HaznDcQU8yOwBRBQWoCOTv-N0_AWUrvECLCBDsFE8yL2BA0Ba8rE7zJcVeFbXbefcnswlDZECst40eVQu9yEVTwXarcUOW3UvzYFzhoUyXXO1Xug8vRld07FUM0KQwyh5jOwYmVfTIXhz4DLw_L5_vHer1ZPd3frWu14DDXRCGBkaa4o4Y2lgsidMdl1yFiodWGYk4RUdogYxE3TEPLFOFKKmqtJBTPwPXedxvD52hSbr1LyvS9HEwYU7sQcCEawRAq6M0eLY-mFI1tt9F5GXctgu1PnO1m2e7jLOzVwXbsvNF_5G9--BtwfXI1</recordid><startdate>20231204</startdate><enddate>20231204</enddate><creator>Zhang, Yaojing</creator><creator>Zhang, Shuangyou</creator><creator>Bi, Toby</creator><creator>Del'Haye, Pascal</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2663-0188</orcidid><orcidid>https://orcid.org/0000-0001-5670-6115</orcidid></search><sort><creationdate>20231204</creationdate><title>Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators</title><author>Zhang, Yaojing ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yaojing</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yaojing</au><au>Zhang, Shuangyou</au><au>Bi, Toby</au><au>Del'Haye, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2023-12-04</date><risdate>2023</risdate><volume>31</volume><issue>25</issue><spage>41420</spage><epage>41427</epage><pages>41420-41427</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Silicon nitride (Si N ) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si N devices requires thick (&gt;600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si N (&gt;400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si N films (&lt;400 nm) provide the advantage of one-step deposition and are widely applied for commercial use. Here, we provide insights into engineering an integrated Si N structure that achieves optimal effective nonlinearity and maintains a compact footprint. A comparative analysis of Si N resonators with varying waveguide thicknesses is conducted and reveals that a 400-nm thin Si N film emerges as a promising solution that strikes a balance among the aforementioned criteria. Based on a commercially available 400-nm Si N film, we experimentally demonstrate the generation of low-noise coherent dark pulses with a repetition rate of 25 GHz in a multimode Si N resonator. The compact spiral-shaped resonator has a footprint of 0.28 mm with a high-quality factor of 4 × 10 . Our demonstrated dark combs with mode spacings of tens of GHz have applications in microwave photonics, optical spectroscopy, and telecommunication systems.</abstract><cop>United States</cop><pmid>38087541</pmid><doi>10.1364/OE.503637</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2663-0188</orcidid><orcidid>https://orcid.org/0000-0001-5670-6115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2023-12, Vol.31 (25), p.41420-41427
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2902959711
source EZB Electronic Journals Library
title Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20optimization%20for%20dark%20soliton%20combs%20in%20thin%20multimode%20silicon%20nitride%20microresonators&rft.jtitle=Optics%20express&rft.au=Zhang,%20Yaojing&rft.date=2023-12-04&rft.volume=31&rft.issue=25&rft.spage=41420&rft.epage=41427&rft.pages=41420-41427&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.503637&rft_dat=%3Cproquest_cross%3E2902959711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-4c1931d63b6e65f8949db8abb14f0fde638614cde1ef18e7d0f7c48cac6ffa463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902959711&rft_id=info:pmid/38087541&rfr_iscdi=true