Loading…
Stable isotope-assisted mass spectrometry reveals in vivo distribution, metabolism, and excretion of tire rubber-derived 6PPD-quinone in mice
6PPD-quinone (6PPD-Q) has been identified as a ubiquitous contaminant in the surrounding locality, including air particles, roadside soils, dust, and water. Recently, the prevalence of 6PPD-Q in human urine has accentuated the urgency for investigating its biological fate. To address this, we conduc...
Saved in:
Published in: | The Science of the total environment 2024-02, Vol.912, p.169291-169291, Article 169291 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 6PPD-quinone (6PPD-Q) has been identified as a ubiquitous contaminant in the surrounding locality, including air particles, roadside soils, dust, and water. Recently, the prevalence of 6PPD-Q in human urine has accentuated the urgency for investigating its biological fate. To address this, we conducted a stable isotope-assisted high-resolution mass spectrometry (HRMS) assay to unveil the distribution, metabolism, excretion, and toxicokinetic properties of this contaminant in a mouse model. Mice were fed with a single dose of deuterated 6PPD-Q-d5 at human-relevant exposure levels. Results indicated that 6PPD-Q was quickly assimilated and distributed into bloodstream and main organs of mice, with the concentrations reaching peaks under 1 h following administration. Notably, 6PPD-Q was primarily distributed in the adipose tissue, marked by a significant Cmax (p |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.169291 |