Loading…
Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond
block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio el...
Saved in:
Published in: | The Journal of chemical physics 2023-12, Vol.159 (23) |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-e529f232c8daed0e942666b47557391d391c934ce3f96f906c2c745ba65f3c7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-e529f232c8daed0e942666b47557391d391c934ce3f96f906c2c745ba65f3c7d3 |
container_end_page | |
container_issue | 23 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 159 |
creator | Zhai, Huanchen Larsson, Henrik R. Lee, Seunghoon Cui, Zhi-Hao Zhu, Tianyu Sun, Chong Peng, Linqing Peng, Ruojing Liao, Ke Tölle, Johannes Yang, Junjie Li, Shuoxue Chan, Garnet Kin-Lic |
description | block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications. |
doi_str_mv | 10.1063/5.0180424 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2903324882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903076566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e529f232c8daed0e942666b47557391d391c934ce3f96f906c2c745ba65f3c7d3</originalsourceid><addsrcrecordid>eNp90c9O3DAQBnCralUW2kNfAFnqBZBCJ7bjxNyWP6VIVJUQPUdeZ8IGEjvYDmhfgOfGZbccOHAYzeWnT6P5CPmWw2EOkv8oDiGvQDDxgcxyqFRWSgUfyQyA5ZmSILfIdgi3AJCXTHwmW7xKTFRiRp6Oe2fu2BGdU-OG0eMSbegekLoRLQ1u8gZp6_WAj87f0ehogw_Yu5Fq21A9jv2KhqgjZq7N4hIz7SM9_X11TnV_43wXl0OgnaXYo4ne2c4k7icTJ48vEQtcOdt8IZ9a3Qf8utk75O_Ps-uTX9nln_OLk_llZnjFY4YFUy3jzFSNxgZQCSalXIiyKEqu8iaNUVwY5K2SrQJpmClFsdCyaLkpG75D9ta5o3f3E4ZYD10w2PfaoptCzRRwzkRVsUS_v6G36Rs2XfeioJSFlEntr5XxLgSPbT36btB-VedQ_yunLupNOcnubhKnxYDNq_zfRgIHaxBMl37aOftO2jP-Cpa2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903076566</pqid></control><display><type>article</type><title>Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Zhai, Huanchen ; Larsson, Henrik R. ; Lee, Seunghoon ; Cui, Zhi-Hao ; Zhu, Tianyu ; Sun, Chong ; Peng, Linqing ; Peng, Ruojing ; Liao, Ke ; Tölle, Johannes ; Yang, Junjie ; Li, Shuoxue ; Chan, Garnet Kin-Lic</creator><creatorcontrib>Zhai, Huanchen ; Larsson, Henrik R. ; Lee, Seunghoon ; Cui, Zhi-Hao ; Zhu, Tianyu ; Sun, Chong ; Peng, Linqing ; Peng, Ruojing ; Liao, Ke ; Tölle, Johannes ; Yang, Junjie ; Li, Shuoxue ; Chan, Garnet Kin-Lic</creatorcontrib><description>block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0180424</identifier><identifier>PMID: 38108484</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Density ; Eigenvectors ; Electronic structure ; Physics ; Quantum chemistry ; Temperature dependence</subject><ispartof>The Journal of chemical physics, 2023-12, Vol.159 (23)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-e529f232c8daed0e942666b47557391d391c934ce3f96f906c2c745ba65f3c7d3</citedby><cites>FETCH-LOGICAL-c383t-e529f232c8daed0e942666b47557391d391c934ce3f96f906c2c745ba65f3c7d3</cites><orcidid>0000-0003-3665-587X ; 0000-0002-5293-7503 ; 0000-0001-8009-6038 ; 0000-0002-9417-1518 ; 0000-0003-2061-3237 ; 0000-0002-8299-9094 ; 0000-0002-6726-6538 ; 0000-0003-0086-0388 ; 0000-0002-7389-4063 ; 0000-0002-2414-7758 ; 0000-0003-3428-0488 ; 0000-0001-5682-2407 ; 0000-0002-3643-9141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0180424$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38108484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Huanchen</creatorcontrib><creatorcontrib>Larsson, Henrik R.</creatorcontrib><creatorcontrib>Lee, Seunghoon</creatorcontrib><creatorcontrib>Cui, Zhi-Hao</creatorcontrib><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>Sun, Chong</creatorcontrib><creatorcontrib>Peng, Linqing</creatorcontrib><creatorcontrib>Peng, Ruojing</creatorcontrib><creatorcontrib>Liao, Ke</creatorcontrib><creatorcontrib>Tölle, Johannes</creatorcontrib><creatorcontrib>Yang, Junjie</creatorcontrib><creatorcontrib>Li, Shuoxue</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><title>Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.</description><subject>Algorithms</subject><subject>Density</subject><subject>Eigenvectors</subject><subject>Electronic structure</subject><subject>Physics</subject><subject>Quantum chemistry</subject><subject>Temperature dependence</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90c9O3DAQBnCralUW2kNfAFnqBZBCJ7bjxNyWP6VIVJUQPUdeZ8IGEjvYDmhfgOfGZbccOHAYzeWnT6P5CPmWw2EOkv8oDiGvQDDxgcxyqFRWSgUfyQyA5ZmSILfIdgi3AJCXTHwmW7xKTFRiRp6Oe2fu2BGdU-OG0eMSbegekLoRLQ1u8gZp6_WAj87f0ehogw_Yu5Fq21A9jv2KhqgjZq7N4hIz7SM9_X11TnV_43wXl0OgnaXYo4ne2c4k7icTJ48vEQtcOdt8IZ9a3Qf8utk75O_Ps-uTX9nln_OLk_llZnjFY4YFUy3jzFSNxgZQCSalXIiyKEqu8iaNUVwY5K2SrQJpmClFsdCyaLkpG75D9ta5o3f3E4ZYD10w2PfaoptCzRRwzkRVsUS_v6G36Rs2XfeioJSFlEntr5XxLgSPbT36btB-VedQ_yunLupNOcnubhKnxYDNq_zfRgIHaxBMl37aOftO2jP-Cpa2</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Zhai, Huanchen</creator><creator>Larsson, Henrik R.</creator><creator>Lee, Seunghoon</creator><creator>Cui, Zhi-Hao</creator><creator>Zhu, Tianyu</creator><creator>Sun, Chong</creator><creator>Peng, Linqing</creator><creator>Peng, Ruojing</creator><creator>Liao, Ke</creator><creator>Tölle, Johannes</creator><creator>Yang, Junjie</creator><creator>Li, Shuoxue</creator><creator>Chan, Garnet Kin-Lic</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3665-587X</orcidid><orcidid>https://orcid.org/0000-0002-5293-7503</orcidid><orcidid>https://orcid.org/0000-0001-8009-6038</orcidid><orcidid>https://orcid.org/0000-0002-9417-1518</orcidid><orcidid>https://orcid.org/0000-0003-2061-3237</orcidid><orcidid>https://orcid.org/0000-0002-8299-9094</orcidid><orcidid>https://orcid.org/0000-0002-6726-6538</orcidid><orcidid>https://orcid.org/0000-0003-0086-0388</orcidid><orcidid>https://orcid.org/0000-0002-7389-4063</orcidid><orcidid>https://orcid.org/0000-0002-2414-7758</orcidid><orcidid>https://orcid.org/0000-0003-3428-0488</orcidid><orcidid>https://orcid.org/0000-0001-5682-2407</orcidid><orcidid>https://orcid.org/0000-0002-3643-9141</orcidid></search><sort><creationdate>20231221</creationdate><title>Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond</title><author>Zhai, Huanchen ; Larsson, Henrik R. ; Lee, Seunghoon ; Cui, Zhi-Hao ; Zhu, Tianyu ; Sun, Chong ; Peng, Linqing ; Peng, Ruojing ; Liao, Ke ; Tölle, Johannes ; Yang, Junjie ; Li, Shuoxue ; Chan, Garnet Kin-Lic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e529f232c8daed0e942666b47557391d391c934ce3f96f906c2c745ba65f3c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Density</topic><topic>Eigenvectors</topic><topic>Electronic structure</topic><topic>Physics</topic><topic>Quantum chemistry</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Huanchen</creatorcontrib><creatorcontrib>Larsson, Henrik R.</creatorcontrib><creatorcontrib>Lee, Seunghoon</creatorcontrib><creatorcontrib>Cui, Zhi-Hao</creatorcontrib><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>Sun, Chong</creatorcontrib><creatorcontrib>Peng, Linqing</creatorcontrib><creatorcontrib>Peng, Ruojing</creatorcontrib><creatorcontrib>Liao, Ke</creatorcontrib><creatorcontrib>Tölle, Johannes</creatorcontrib><creatorcontrib>Yang, Junjie</creatorcontrib><creatorcontrib>Li, Shuoxue</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Huanchen</au><au>Larsson, Henrik R.</au><au>Lee, Seunghoon</au><au>Cui, Zhi-Hao</au><au>Zhu, Tianyu</au><au>Sun, Chong</au><au>Peng, Linqing</au><au>Peng, Ruojing</au><au>Liao, Ke</au><au>Tölle, Johannes</au><au>Yang, Junjie</au><au>Li, Shuoxue</au><au>Chan, Garnet Kin-Lic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-12-21</date><risdate>2023</risdate><volume>159</volume><issue>23</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38108484</pmid><doi>10.1063/5.0180424</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3665-587X</orcidid><orcidid>https://orcid.org/0000-0002-5293-7503</orcidid><orcidid>https://orcid.org/0000-0001-8009-6038</orcidid><orcidid>https://orcid.org/0000-0002-9417-1518</orcidid><orcidid>https://orcid.org/0000-0003-2061-3237</orcidid><orcidid>https://orcid.org/0000-0002-8299-9094</orcidid><orcidid>https://orcid.org/0000-0002-6726-6538</orcidid><orcidid>https://orcid.org/0000-0003-0086-0388</orcidid><orcidid>https://orcid.org/0000-0002-7389-4063</orcidid><orcidid>https://orcid.org/0000-0002-2414-7758</orcidid><orcidid>https://orcid.org/0000-0003-3428-0488</orcidid><orcidid>https://orcid.org/0000-0001-5682-2407</orcidid><orcidid>https://orcid.org/0000-0002-3643-9141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-12, Vol.159 (23) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2903324882 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | Algorithms Density Eigenvectors Electronic structure Physics Quantum chemistry Temperature dependence |
title | Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block2:%20A%20comprehensive%20open%20source%20framework%20to%20develop%20and%20apply%20state-of-the-art%20DMRG%20algorithms%20in%20electronic%20structure%20and%20beyond&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Zhai,%20Huanchen&rft.date=2023-12-21&rft.volume=159&rft.issue=23&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0180424&rft_dat=%3Cproquest_scita%3E2903076566%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-e529f232c8daed0e942666b47557391d391c934ce3f96f906c2c745ba65f3c7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903076566&rft_id=info:pmid/38108484&rfr_iscdi=true |