Loading…

TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex

Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing...

Full description

Saved in:
Bibliographic Details
Published in:Experimental neurology 2024-03, Vol.373, p.114652-114652, Article 114652
Main Authors: Francis-Oliveira, José, Higa, Guilherme Shigueto Vilar, Viana, Felipe José Costa, Cruvinel, Emily, Carlos-Lima, Estevão, da Silva Borges, Fernando, Zampieri, Thais Tessari, Rebello, Fernanda Pereira, Ulrich, Henning, De Pasquale, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c317t-f672ec09fff42dedb2e41c76d2342f0b9abb6caccd884f0b185b0632b84f68783
container_end_page 114652
container_issue
container_start_page 114652
container_title Experimental neurology
container_volume 373
creator Francis-Oliveira, José
Higa, Guilherme Shigueto Vilar
Viana, Felipe José Costa
Cruvinel, Emily
Carlos-Lima, Estevão
da Silva Borges, Fernando
Zampieri, Thais Tessari
Rebello, Fernanda Pereira
Ulrich, Henning
De Pasquale, Roberto
description Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development. •In the prelimbic cortex, TREK-1 reduces synaptic excitatory responses induced by 5HT1A activation.•5HT1A receptor activation decreases excitatory and inhibitory evoked responses in the prelimbic cortex.•TREK-1 inhibition promotes TBS-induced LTD in the prelimbic cortex when acting in synergy with 5HT1A.•TREK-1 inhibition reduces synaptic excitation and facilitates LTD in animals subjected to early life stress.
doi_str_mv 10.1016/j.expneurol.2023.114652
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2903326647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488623003370</els_id><sourcerecordid>2903326647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-f672ec09fff42dedb2e41c76d2342f0b9abb6caccd884f0b185b0632b84f68783</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMouq7-Be3RS-vkYdoeRdYHCoKs59CkU8zSl0kqu__eLFWvnoZhvnl9hFxSyChQeb3JcDv2OLmhzRgwnlEq5A07IAsKJaRMcDgkCwAqUlEU8oScer8BgFKw_Jic8IICz6FckPv12-o5pYntP6y2wQ59MrqhGwL6xO_6agzWJGNb-Rht2EUuCR8YGWxtp2PNDC7g9owcNVXr8fwnLsn7_Wp995i-vD483d2-pIbTPKSNzBkaKJumEazGWjMU1OSyZlywBnRZaS1NZUxdFCLmtLjRIDnTMZNFXvAluZrnxiM_J_RBddYbbNuqx2HyipXAOZNS5BHNZ9S4wXuHjRqd7Sq3UxTUXqLaqD-Jai9RzRJj58XPkkl3WP_1_VqLwO0MYHz1y6JT3ljsDdbWoQmqHuy_S74BmdeIGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903326647</pqid></control><display><type>article</type><title>TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex</title><source>ScienceDirect Freedom Collection</source><creator>Francis-Oliveira, José ; Higa, Guilherme Shigueto Vilar ; Viana, Felipe José Costa ; Cruvinel, Emily ; Carlos-Lima, Estevão ; da Silva Borges, Fernando ; Zampieri, Thais Tessari ; Rebello, Fernanda Pereira ; Ulrich, Henning ; De Pasquale, Roberto</creator><creatorcontrib>Francis-Oliveira, José ; Higa, Guilherme Shigueto Vilar ; Viana, Felipe José Costa ; Cruvinel, Emily ; Carlos-Lima, Estevão ; da Silva Borges, Fernando ; Zampieri, Thais Tessari ; Rebello, Fernanda Pereira ; Ulrich, Henning ; De Pasquale, Roberto</creatorcontrib><description>Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development. •In the prelimbic cortex, TREK-1 reduces synaptic excitatory responses induced by 5HT1A activation.•5HT1A receptor activation decreases excitatory and inhibitory evoked responses in the prelimbic cortex.•TREK-1 inhibition promotes TBS-induced LTD in the prelimbic cortex when acting in synergy with 5HT1A.•TREK-1 inhibition reduces synaptic excitation and facilitates LTD in animals subjected to early life stress.</description><identifier>ISSN: 0014-4886</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2023.114652</identifier><identifier>PMID: 38103709</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5HT1A receptor ; Animals ; Antidepressive Agents - pharmacology ; Cerebral Cortex ; Depression ; Hippocampus - physiology ; Long-Term Synaptic Depression - physiology ; LTD ; Neuronal Plasticity - physiology ; Potassium Channels, Tandem Pore Domain - genetics ; Prefrontal Cortex ; Prelimbic cortex ; Rats ; Synaptic plasticity ; Synaptic Transmission - physiology ; TREK-1</subject><ispartof>Experimental neurology, 2024-03, Vol.373, p.114652-114652, Article 114652</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-f672ec09fff42dedb2e41c76d2342f0b9abb6caccd884f0b185b0632b84f68783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38103709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Francis-Oliveira, José</creatorcontrib><creatorcontrib>Higa, Guilherme Shigueto Vilar</creatorcontrib><creatorcontrib>Viana, Felipe José Costa</creatorcontrib><creatorcontrib>Cruvinel, Emily</creatorcontrib><creatorcontrib>Carlos-Lima, Estevão</creatorcontrib><creatorcontrib>da Silva Borges, Fernando</creatorcontrib><creatorcontrib>Zampieri, Thais Tessari</creatorcontrib><creatorcontrib>Rebello, Fernanda Pereira</creatorcontrib><creatorcontrib>Ulrich, Henning</creatorcontrib><creatorcontrib>De Pasquale, Roberto</creatorcontrib><title>TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development. •In the prelimbic cortex, TREK-1 reduces synaptic excitatory responses induced by 5HT1A activation.•5HT1A receptor activation decreases excitatory and inhibitory evoked responses in the prelimbic cortex.•TREK-1 inhibition promotes TBS-induced LTD in the prelimbic cortex when acting in synergy with 5HT1A.•TREK-1 inhibition reduces synaptic excitation and facilitates LTD in animals subjected to early life stress.</description><subject>5HT1A receptor</subject><subject>Animals</subject><subject>Antidepressive Agents - pharmacology</subject><subject>Cerebral Cortex</subject><subject>Depression</subject><subject>Hippocampus - physiology</subject><subject>Long-Term Synaptic Depression - physiology</subject><subject>LTD</subject><subject>Neuronal Plasticity - physiology</subject><subject>Potassium Channels, Tandem Pore Domain - genetics</subject><subject>Prefrontal Cortex</subject><subject>Prelimbic cortex</subject><subject>Rats</subject><subject>Synaptic plasticity</subject><subject>Synaptic Transmission - physiology</subject><subject>TREK-1</subject><issn>0014-4886</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQgIMouq7-Be3RS-vkYdoeRdYHCoKs59CkU8zSl0kqu__eLFWvnoZhvnl9hFxSyChQeb3JcDv2OLmhzRgwnlEq5A07IAsKJaRMcDgkCwAqUlEU8oScer8BgFKw_Jic8IICz6FckPv12-o5pYntP6y2wQ59MrqhGwL6xO_6agzWJGNb-Rht2EUuCR8YGWxtp2PNDC7g9owcNVXr8fwnLsn7_Wp995i-vD483d2-pIbTPKSNzBkaKJumEazGWjMU1OSyZlywBnRZaS1NZUxdFCLmtLjRIDnTMZNFXvAluZrnxiM_J_RBddYbbNuqx2HyipXAOZNS5BHNZ9S4wXuHjRqd7Sq3UxTUXqLaqD-Jai9RzRJj58XPkkl3WP_1_VqLwO0MYHz1y6JT3ljsDdbWoQmqHuy_S74BmdeIGw</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Francis-Oliveira, José</creator><creator>Higa, Guilherme Shigueto Vilar</creator><creator>Viana, Felipe José Costa</creator><creator>Cruvinel, Emily</creator><creator>Carlos-Lima, Estevão</creator><creator>da Silva Borges, Fernando</creator><creator>Zampieri, Thais Tessari</creator><creator>Rebello, Fernanda Pereira</creator><creator>Ulrich, Henning</creator><creator>De Pasquale, Roberto</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202403</creationdate><title>TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex</title><author>Francis-Oliveira, José ; Higa, Guilherme Shigueto Vilar ; Viana, Felipe José Costa ; Cruvinel, Emily ; Carlos-Lima, Estevão ; da Silva Borges, Fernando ; Zampieri, Thais Tessari ; Rebello, Fernanda Pereira ; Ulrich, Henning ; De Pasquale, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-f672ec09fff42dedb2e41c76d2342f0b9abb6caccd884f0b185b0632b84f68783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5HT1A receptor</topic><topic>Animals</topic><topic>Antidepressive Agents - pharmacology</topic><topic>Cerebral Cortex</topic><topic>Depression</topic><topic>Hippocampus - physiology</topic><topic>Long-Term Synaptic Depression - physiology</topic><topic>LTD</topic><topic>Neuronal Plasticity - physiology</topic><topic>Potassium Channels, Tandem Pore Domain - genetics</topic><topic>Prefrontal Cortex</topic><topic>Prelimbic cortex</topic><topic>Rats</topic><topic>Synaptic plasticity</topic><topic>Synaptic Transmission - physiology</topic><topic>TREK-1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francis-Oliveira, José</creatorcontrib><creatorcontrib>Higa, Guilherme Shigueto Vilar</creatorcontrib><creatorcontrib>Viana, Felipe José Costa</creatorcontrib><creatorcontrib>Cruvinel, Emily</creatorcontrib><creatorcontrib>Carlos-Lima, Estevão</creatorcontrib><creatorcontrib>da Silva Borges, Fernando</creatorcontrib><creatorcontrib>Zampieri, Thais Tessari</creatorcontrib><creatorcontrib>Rebello, Fernanda Pereira</creatorcontrib><creatorcontrib>Ulrich, Henning</creatorcontrib><creatorcontrib>De Pasquale, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francis-Oliveira, José</au><au>Higa, Guilherme Shigueto Vilar</au><au>Viana, Felipe José Costa</au><au>Cruvinel, Emily</au><au>Carlos-Lima, Estevão</au><au>da Silva Borges, Fernando</au><au>Zampieri, Thais Tessari</au><au>Rebello, Fernanda Pereira</au><au>Ulrich, Henning</au><au>De Pasquale, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2024-03</date><risdate>2024</risdate><volume>373</volume><spage>114652</spage><epage>114652</epage><pages>114652-114652</pages><artnum>114652</artnum><issn>0014-4886</issn><eissn>1090-2430</eissn><abstract>Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development. •In the prelimbic cortex, TREK-1 reduces synaptic excitatory responses induced by 5HT1A activation.•5HT1A receptor activation decreases excitatory and inhibitory evoked responses in the prelimbic cortex.•TREK-1 inhibition promotes TBS-induced LTD in the prelimbic cortex when acting in synergy with 5HT1A.•TREK-1 inhibition reduces synaptic excitation and facilitates LTD in animals subjected to early life stress.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38103709</pmid><doi>10.1016/j.expneurol.2023.114652</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-4886
ispartof Experimental neurology, 2024-03, Vol.373, p.114652-114652, Article 114652
issn 0014-4886
1090-2430
language eng
recordid cdi_proquest_miscellaneous_2903326647
source ScienceDirect Freedom Collection
subjects 5HT1A receptor
Animals
Antidepressive Agents - pharmacology
Cerebral Cortex
Depression
Hippocampus - physiology
Long-Term Synaptic Depression - physiology
LTD
Neuronal Plasticity - physiology
Potassium Channels, Tandem Pore Domain - genetics
Prefrontal Cortex
Prelimbic cortex
Rats
Synaptic plasticity
Synaptic Transmission - physiology
TREK-1
title TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TREK-1%20inhibition%20promotes%20synaptic%20plasticity%20in%20the%20prelimbic%20cortex&rft.jtitle=Experimental%20neurology&rft.au=Francis-Oliveira,%20Jos%C3%A9&rft.date=2024-03&rft.volume=373&rft.spage=114652&rft.epage=114652&rft.pages=114652-114652&rft.artnum=114652&rft.issn=0014-4886&rft.eissn=1090-2430&rft_id=info:doi/10.1016/j.expneurol.2023.114652&rft_dat=%3Cproquest_cross%3E2903326647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-f672ec09fff42dedb2e41c76d2342f0b9abb6caccd884f0b185b0632b84f68783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903326647&rft_id=info:pmid/38103709&rfr_iscdi=true