Loading…
Anion-Exchange Electrospun Mixed-Matrix Polymer Fibers of Colesevelam for Water Treatment
Novel anion-exchange electrospun fiber membranes of polycaprolactone doped with the cationic, cross-linked colesevelam polymer are reported. The weight fraction of cross-linked cationic colesevelam polymer, as the active phase within the PCL matrix, can readily be controlled in the synthesis of the...
Saved in:
Published in: | ACS applied materials & interfaces 2023-12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel anion-exchange electrospun fiber membranes of polycaprolactone doped with the cationic, cross-linked colesevelam polymer are reported. The weight fraction of cross-linked cationic colesevelam polymer, as the active phase within the PCL matrix, can readily be controlled in the synthesis of the mixed-matrix fibers (Cole@PCL), enabling optimization of the ion-exchange properties of the resulted membranes. This approach enabled adaptation of anion-exchange resins to a permeable, flexible membrane form, which is a significant advancement toward futuristic water treatment applications, demonstrated herein for the removal of trace contaminants, including nitrates and phosphates, as well as anionic dyes. The Cole@PCL membranes demonstrated the dependence of contaminant uptake on the weight percentage of colesevelam in the mixed-matrix membrane. An optimal 10 wt % of colesevelam was identified, demonstrating a staggering ion removal capacity of 155.8 mg/g for nitrate, 177.6 mg/g for phosphate, and 70 mg/g for Methyl Orange. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c13473 |