Loading…

Bayesian inference for prediction of survival probability in prime‐boost vaccination regimes

We focus on Bayesian inference for survival probabilities in a prime‐boost vaccination regime in the development of an Ebola vaccine. We are interested in the heterologous prime‐boost regimen (unmatched vaccine deliverys using the same antigen) due to its demonstrated durable immunity, well‐tolerate...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2024-02, Vol.43 (3), p.560-577
Main Authors: Lu, Yuelin, Carlin, Bradley P., Seaman, John W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3102-9c122e22d0571ae0aea677853b5c15396e43e5bb89de9bcf702be4b1740798ce3
container_end_page 577
container_issue 3
container_start_page 560
container_title Statistics in medicine
container_volume 43
creator Lu, Yuelin
Carlin, Bradley P.
Seaman, John W.
description We focus on Bayesian inference for survival probabilities in a prime‐boost vaccination regime in the development of an Ebola vaccine. We are interested in the heterologous prime‐boost regimen (unmatched vaccine deliverys using the same antigen) due to its demonstrated durable immunity, well‐tolerated safety profile, and suitability as a population vaccination strategy. Our research is motivated by the need to estimate the survival probability given the administered dosage. To do so, we establish two key relationships. Firstly, we model the connection between the designed dose concentration and the induced antibody count using a Bayesian response surface model. Secondly, we model the association between the antibody count and the probability of survival when experimental subjects are exposed to the Ebola virus in a controlled setting using a Bayesian probability of survival model. Finally, we employ a combination of the two models with dose concentration as the predictor of the survival probability for a future vaccinated population. We implement our two‐level Bayesian model in Stan, and illustrate its use with simulated and real‐world data. Performance of this model is evaluated via simulation. Our work offers a new application of drug synergy models to examine prime‐boost vaccine efficacy, and does so using a hierarchical Bayesian framework that allows us to use dose concentration to predict survival probability.
doi_str_mv 10.1002/sim.9972
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2903859515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913344983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3102-9c122e22d0571ae0aea677853b5c15396e43e5bb89de9bcf702be4b1740798ce3</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MotlbBJ5AFL15W87FpNkctfkHFg3oOSTorKduNJt3K3nwEH8Fn8VF8EtP6BYKngZnf_Jj5I7RL8CHBmB5FNzuUUtA11CdYihxTXq6jPqZC5ENBeA9txTjFmBBOxSbqsXKJYdFH6kR3EJ1uMtdUEKCxkFU-ZA8BJs7OnW8yX2WxDQu30HVqe6ONq928Swtvrw_BzeD9-cV4H-fZQlvrGr3aCnCfRnEbbVS6jrDzVQfo7uz0dnSRj6_PL0fH49wygmkuLaEUKJ1gLogGrEEPhSg5M9wSzuQQCgbcmFJOQBpbCUwNFIaIAgtZWmADdPDpTRc-thDnauaihbrWDfg2KioxK7nkSTZA-3_QqW9Dk65LFGGsKGTJfoU2-BgDVGr5qw6dIlgtQ1cpdLUMPaF7X8LWzGDyA36nnID8E3hyNXT_itTN5dVK-AHgxo15</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913344983</pqid></control><display><type>article</type><title>Bayesian inference for prediction of survival probability in prime‐boost vaccination regimes</title><source>Wiley</source><creator>Lu, Yuelin ; Carlin, Bradley P. ; Seaman, John W.</creator><creatorcontrib>Lu, Yuelin ; Carlin, Bradley P. ; Seaman, John W.</creatorcontrib><description>We focus on Bayesian inference for survival probabilities in a prime‐boost vaccination regime in the development of an Ebola vaccine. We are interested in the heterologous prime‐boost regimen (unmatched vaccine deliverys using the same antigen) due to its demonstrated durable immunity, well‐tolerated safety profile, and suitability as a population vaccination strategy. Our research is motivated by the need to estimate the survival probability given the administered dosage. To do so, we establish two key relationships. Firstly, we model the connection between the designed dose concentration and the induced antibody count using a Bayesian response surface model. Secondly, we model the association between the antibody count and the probability of survival when experimental subjects are exposed to the Ebola virus in a controlled setting using a Bayesian probability of survival model. Finally, we employ a combination of the two models with dose concentration as the predictor of the survival probability for a future vaccinated population. We implement our two‐level Bayesian model in Stan, and illustrate its use with simulated and real‐world data. Performance of this model is evaluated via simulation. Our work offers a new application of drug synergy models to examine prime‐boost vaccine efficacy, and does so using a hierarchical Bayesian framework that allows us to use dose concentration to predict survival probability.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9972</identifier><identifier>PMID: 38109707</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Bayesian hierarchical model ; dose–response modeling ; Ebola Vaccines - pharmacology ; Ebola virus ; Hemorrhagic Fever, Ebola - prevention &amp; control ; heterologous vaccination ; Humans ; Immunization, Secondary ; Probability ; Survival analysis ; Vaccination ; Vaccines</subject><ispartof>Statistics in medicine, 2024-02, Vol.43 (3), p.560-577</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3102-9c122e22d0571ae0aea677853b5c15396e43e5bb89de9bcf702be4b1740798ce3</cites><orcidid>0000-0002-0684-8753 ; 0000-0002-0701-4929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38109707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yuelin</creatorcontrib><creatorcontrib>Carlin, Bradley P.</creatorcontrib><creatorcontrib>Seaman, John W.</creatorcontrib><title>Bayesian inference for prediction of survival probability in prime‐boost vaccination regimes</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>We focus on Bayesian inference for survival probabilities in a prime‐boost vaccination regime in the development of an Ebola vaccine. We are interested in the heterologous prime‐boost regimen (unmatched vaccine deliverys using the same antigen) due to its demonstrated durable immunity, well‐tolerated safety profile, and suitability as a population vaccination strategy. Our research is motivated by the need to estimate the survival probability given the administered dosage. To do so, we establish two key relationships. Firstly, we model the connection between the designed dose concentration and the induced antibody count using a Bayesian response surface model. Secondly, we model the association between the antibody count and the probability of survival when experimental subjects are exposed to the Ebola virus in a controlled setting using a Bayesian probability of survival model. Finally, we employ a combination of the two models with dose concentration as the predictor of the survival probability for a future vaccinated population. We implement our two‐level Bayesian model in Stan, and illustrate its use with simulated and real‐world data. Performance of this model is evaluated via simulation. Our work offers a new application of drug synergy models to examine prime‐boost vaccine efficacy, and does so using a hierarchical Bayesian framework that allows us to use dose concentration to predict survival probability.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian hierarchical model</subject><subject>dose–response modeling</subject><subject>Ebola Vaccines - pharmacology</subject><subject>Ebola virus</subject><subject>Hemorrhagic Fever, Ebola - prevention &amp; control</subject><subject>heterologous vaccination</subject><subject>Humans</subject><subject>Immunization, Secondary</subject><subject>Probability</subject><subject>Survival analysis</subject><subject>Vaccination</subject><subject>Vaccines</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEQx4MotlbBJ5AFL15W87FpNkctfkHFg3oOSTorKduNJt3K3nwEH8Fn8VF8EtP6BYKngZnf_Jj5I7RL8CHBmB5FNzuUUtA11CdYihxTXq6jPqZC5ENBeA9txTjFmBBOxSbqsXKJYdFH6kR3EJ1uMtdUEKCxkFU-ZA8BJs7OnW8yX2WxDQu30HVqe6ONq928Swtvrw_BzeD9-cV4H-fZQlvrGr3aCnCfRnEbbVS6jrDzVQfo7uz0dnSRj6_PL0fH49wygmkuLaEUKJ1gLogGrEEPhSg5M9wSzuQQCgbcmFJOQBpbCUwNFIaIAgtZWmADdPDpTRc-thDnauaihbrWDfg2KioxK7nkSTZA-3_QqW9Dk65LFGGsKGTJfoU2-BgDVGr5qw6dIlgtQ1cpdLUMPaF7X8LWzGDyA36nnID8E3hyNXT_itTN5dVK-AHgxo15</recordid><startdate>20240210</startdate><enddate>20240210</enddate><creator>Lu, Yuelin</creator><creator>Carlin, Bradley P.</creator><creator>Seaman, John W.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0684-8753</orcidid><orcidid>https://orcid.org/0000-0002-0701-4929</orcidid></search><sort><creationdate>20240210</creationdate><title>Bayesian inference for prediction of survival probability in prime‐boost vaccination regimes</title><author>Lu, Yuelin ; Carlin, Bradley P. ; Seaman, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3102-9c122e22d0571ae0aea677853b5c15396e43e5bb89de9bcf702be4b1740798ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian hierarchical model</topic><topic>dose–response modeling</topic><topic>Ebola Vaccines - pharmacology</topic><topic>Ebola virus</topic><topic>Hemorrhagic Fever, Ebola - prevention &amp; control</topic><topic>heterologous vaccination</topic><topic>Humans</topic><topic>Immunization, Secondary</topic><topic>Probability</topic><topic>Survival analysis</topic><topic>Vaccination</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yuelin</creatorcontrib><creatorcontrib>Carlin, Bradley P.</creatorcontrib><creatorcontrib>Seaman, John W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yuelin</au><au>Carlin, Bradley P.</au><au>Seaman, John W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference for prediction of survival probability in prime‐boost vaccination regimes</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2024-02-10</date><risdate>2024</risdate><volume>43</volume><issue>3</issue><spage>560</spage><epage>577</epage><pages>560-577</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>We focus on Bayesian inference for survival probabilities in a prime‐boost vaccination regime in the development of an Ebola vaccine. We are interested in the heterologous prime‐boost regimen (unmatched vaccine deliverys using the same antigen) due to its demonstrated durable immunity, well‐tolerated safety profile, and suitability as a population vaccination strategy. Our research is motivated by the need to estimate the survival probability given the administered dosage. To do so, we establish two key relationships. Firstly, we model the connection between the designed dose concentration and the induced antibody count using a Bayesian response surface model. Secondly, we model the association between the antibody count and the probability of survival when experimental subjects are exposed to the Ebola virus in a controlled setting using a Bayesian probability of survival model. Finally, we employ a combination of the two models with dose concentration as the predictor of the survival probability for a future vaccinated population. We implement our two‐level Bayesian model in Stan, and illustrate its use with simulated and real‐world data. Performance of this model is evaluated via simulation. Our work offers a new application of drug synergy models to examine prime‐boost vaccine efficacy, and does so using a hierarchical Bayesian framework that allows us to use dose concentration to predict survival probability.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38109707</pmid><doi>10.1002/sim.9972</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0684-8753</orcidid><orcidid>https://orcid.org/0000-0002-0701-4929</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2024-02, Vol.43 (3), p.560-577
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2903859515
source Wiley
subjects Bayes Theorem
Bayesian analysis
Bayesian hierarchical model
dose–response modeling
Ebola Vaccines - pharmacology
Ebola virus
Hemorrhagic Fever, Ebola - prevention & control
heterologous vaccination
Humans
Immunization, Secondary
Probability
Survival analysis
Vaccination
Vaccines
title Bayesian inference for prediction of survival probability in prime‐boost vaccination regimes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20for%20prediction%20of%20survival%20probability%20in%C2%A0prime%E2%80%90boost%20vaccination%20regimes&rft.jtitle=Statistics%20in%20medicine&rft.au=Lu,%20Yuelin&rft.date=2024-02-10&rft.volume=43&rft.issue=3&rft.spage=560&rft.epage=577&rft.pages=560-577&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9972&rft_dat=%3Cproquest_cross%3E2913344983%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3102-9c122e22d0571ae0aea677853b5c15396e43e5bb89de9bcf702be4b1740798ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913344983&rft_id=info:pmid/38109707&rfr_iscdi=true