Loading…

Simulation of precise orbit determination of lunar orbiters

Based on the ongoing Chinese lunar exploration mission, i.e. the “Chang'e 1” project, precise orbit determination of lunar orbiters is analyzed for the actual geographical distribution and observational accuracy of the Chinese united S-band (USB) observation and control network as well as the v...

Full description

Saved in:
Bibliographic Details
Published in:Chinese astronomy and astrophysics 2005-10, Vol.29 (4), p.449-460
Main Authors: Hu, Xiao-gong, Huang, Cheng, Huang, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the ongoing Chinese lunar exploration mission, i.e. the “Chang'e 1” project, precise orbit determination of lunar orbiters is analyzed for the actual geographical distribution and observational accuracy of the Chinese united S-band (USB) observation and control network as well as the very long baseline interferometry (VLBI) tracking network. The observed data are first simulated, then solutions are found after including the effects of various error sources and finally compared. We use the space data analysis software package, GEODYN, developed at Goddard Space Flight Center, NASA, USA. The primary error source of the flight orbiting the moon is the lunar gravity field. Therefore, the (formal) error of JGL165P1, i.e. the model of the lunar gravity field with the highest accuracy at present, is first discussed. After simulating the data of ranging and velocity measurement as well as the VLBI data of the time delay and time delay rate, precise orbit determination is carried out when the error of the lunar gravity field is added in. When the orbit is determined, the method of reduced dynamics is adopted with the selection of appropriate empirical acceleration parameters to absorb the effect of errors in the lunar gravity field on the orbit determination. The results show that for lunar missions like the “Chang'e 1” project, that do not take the lunar gravity field as their main scientific objective, the method of reduced dynamics is a simple and effective means of improving the accuracy of the orbit determination of the lunar orbiters.
ISSN:0275-1062
1879-128X
DOI:10.1016/j.chinastron.2005.10.012