Loading…

Error estimation of numerical solutions of linear convection-diffusion problem

We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the fi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computational fluid dynamics 2005-01, Vol.19 (1), p.61-66
Main Authors: Tanaka, Nobuatsu, Motoyama, Yasunori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73
cites cdi_FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73
container_end_page 66
container_issue 1
container_start_page 61
container_title International journal of computational fluid dynamics
container_volume 19
creator Tanaka, Nobuatsu
Motoyama, Yasunori
description We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the finite-difference method of upwind and Lax-Wendroff schemes for the linear convection-diffusion problems. If a standard case of typical parameters is computed with the method, no additional computation is required to estimate the other numerical parameters' results such as more detailed solutions. Furthermore, we can quantitatively estimate the numerical error only from the sensitivity analysis results.
doi_str_mv 10.1080/10618560412331286346
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29040644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29040644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD7-gYuu3FVvHk1TNyLD-IBBN7oOSZpAJG3GpFXn39syLgdd3cvhfPdxELrAcIVBwDUGjkXFgWFCKSaCU8YP0AIDaUogVX049xyXk4cco5Oc3wGgIQIv0PMqpZgKmwffqcHHvoiu6MfOJm9UKHIM46zmWQ6-tyoVJvaf1sxq2XrnxjxTmxR1sN0ZOnIqZHv-W0_R2_3qdflYrl8enpZ369JQ0QylA01069pWUa5b3lirmRBYWYo1rmnFmspyWpmmNspREJRDRS02gDWtK1PTU3S5mzvt_Rin62Xns7EhqN7GMUvSAAPO2GRkO6NJMedkndyk6dO0lRjkHJ7cF96E3eww37uYOvUVU2jloLYhJpdUb3zeC8rhe5jg239h-uf6H58piaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29040644</pqid></control><display><type>article</type><title>Error estimation of numerical solutions of linear convection-diffusion problem</title><source>Taylor and Francis Science and Technology Collection</source><creator>Tanaka, Nobuatsu ; Motoyama, Yasunori</creator><creatorcontrib>Tanaka, Nobuatsu ; Motoyama, Yasunori</creatorcontrib><description>We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the finite-difference method of upwind and Lax-Wendroff schemes for the linear convection-diffusion problems. If a standard case of typical parameters is computed with the method, no additional computation is required to estimate the other numerical parameters' results such as more detailed solutions. Furthermore, we can quantitatively estimate the numerical error only from the sensitivity analysis results.</description><identifier>ISSN: 1061-8562</identifier><identifier>EISSN: 1029-0257</identifier><identifier>DOI: 10.1080/10618560412331286346</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Convection-diffusion problem ; Error estimation ; Lax-Wendroff scheme ; Sensitivity analysis ; Upwind scheme</subject><ispartof>International journal of computational fluid dynamics, 2005-01, Vol.19 (1), p.61-66</ispartof><rights>Copyright Taylor &amp; Francis 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73</citedby><cites>FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tanaka, Nobuatsu</creatorcontrib><creatorcontrib>Motoyama, Yasunori</creatorcontrib><title>Error estimation of numerical solutions of linear convection-diffusion problem</title><title>International journal of computational fluid dynamics</title><description>We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the finite-difference method of upwind and Lax-Wendroff schemes for the linear convection-diffusion problems. If a standard case of typical parameters is computed with the method, no additional computation is required to estimate the other numerical parameters' results such as more detailed solutions. Furthermore, we can quantitatively estimate the numerical error only from the sensitivity analysis results.</description><subject>Convection-diffusion problem</subject><subject>Error estimation</subject><subject>Lax-Wendroff scheme</subject><subject>Sensitivity analysis</subject><subject>Upwind scheme</subject><issn>1061-8562</issn><issn>1029-0257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD7-gYuu3FVvHk1TNyLD-IBBN7oOSZpAJG3GpFXn39syLgdd3cvhfPdxELrAcIVBwDUGjkXFgWFCKSaCU8YP0AIDaUogVX049xyXk4cco5Oc3wGgIQIv0PMqpZgKmwffqcHHvoiu6MfOJm9UKHIM46zmWQ6-tyoVJvaf1sxq2XrnxjxTmxR1sN0ZOnIqZHv-W0_R2_3qdflYrl8enpZ369JQ0QylA01069pWUa5b3lirmRBYWYo1rmnFmspyWpmmNspREJRDRS02gDWtK1PTU3S5mzvt_Rin62Xns7EhqN7GMUvSAAPO2GRkO6NJMedkndyk6dO0lRjkHJ7cF96E3eww37uYOvUVU2jloLYhJpdUb3zeC8rhe5jg239h-uf6H58piaU</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Tanaka, Nobuatsu</creator><creator>Motoyama, Yasunori</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050101</creationdate><title>Error estimation of numerical solutions of linear convection-diffusion problem</title><author>Tanaka, Nobuatsu ; Motoyama, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Convection-diffusion problem</topic><topic>Error estimation</topic><topic>Lax-Wendroff scheme</topic><topic>Sensitivity analysis</topic><topic>Upwind scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Nobuatsu</creatorcontrib><creatorcontrib>Motoyama, Yasunori</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Nobuatsu</au><au>Motoyama, Yasunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error estimation of numerical solutions of linear convection-diffusion problem</atitle><jtitle>International journal of computational fluid dynamics</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>19</volume><issue>1</issue><spage>61</spage><epage>66</epage><pages>61-66</pages><issn>1061-8562</issn><eissn>1029-0257</eissn><abstract>We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the finite-difference method of upwind and Lax-Wendroff schemes for the linear convection-diffusion problems. If a standard case of typical parameters is computed with the method, no additional computation is required to estimate the other numerical parameters' results such as more detailed solutions. Furthermore, we can quantitatively estimate the numerical error only from the sensitivity analysis results.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10618560412331286346</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-8562
ispartof International journal of computational fluid dynamics, 2005-01, Vol.19 (1), p.61-66
issn 1061-8562
1029-0257
language eng
recordid cdi_proquest_miscellaneous_29040644
source Taylor and Francis Science and Technology Collection
subjects Convection-diffusion problem
Error estimation
Lax-Wendroff scheme
Sensitivity analysis
Upwind scheme
title Error estimation of numerical solutions of linear convection-diffusion problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20estimation%20of%20numerical%20solutions%20of%20linear%20convection-diffusion%20problem&rft.jtitle=International%20journal%20of%20computational%20fluid%20dynamics&rft.au=Tanaka,%20Nobuatsu&rft.date=2005-01-01&rft.volume=19&rft.issue=1&rft.spage=61&rft.epage=66&rft.pages=61-66&rft.issn=1061-8562&rft.eissn=1029-0257&rft_id=info:doi/10.1080/10618560412331286346&rft_dat=%3Cproquest_cross%3E29040644%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29040644&rft_id=info:pmid/&rfr_iscdi=true