Loading…
Error estimation of numerical solutions of linear convection-diffusion problem
We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the fi...
Saved in:
Published in: | International journal of computational fluid dynamics 2005-01, Vol.19 (1), p.61-66 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73 |
container_end_page | 66 |
container_issue | 1 |
container_start_page | 61 |
container_title | International journal of computational fluid dynamics |
container_volume | 19 |
creator | Tanaka, Nobuatsu Motoyama, Yasunori |
description | We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the finite-difference method of upwind and Lax-Wendroff schemes for the linear convection-diffusion problems. If a standard case of typical parameters is computed with the method, no additional computation is required to estimate the other numerical parameters' results such as more detailed solutions. Furthermore, we can quantitatively estimate the numerical error only from the sensitivity analysis results. |
doi_str_mv | 10.1080/10618560412331286346 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29040644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29040644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD7-gYuu3FVvHk1TNyLD-IBBN7oOSZpAJG3GpFXn39syLgdd3cvhfPdxELrAcIVBwDUGjkXFgWFCKSaCU8YP0AIDaUogVX049xyXk4cco5Oc3wGgIQIv0PMqpZgKmwffqcHHvoiu6MfOJm9UKHIM46zmWQ6-tyoVJvaf1sxq2XrnxjxTmxR1sN0ZOnIqZHv-W0_R2_3qdflYrl8enpZ369JQ0QylA01069pWUa5b3lirmRBYWYo1rmnFmspyWpmmNspREJRDRS02gDWtK1PTU3S5mzvt_Rin62Xns7EhqN7GMUvSAAPO2GRkO6NJMedkndyk6dO0lRjkHJ7cF96E3eww37uYOvUVU2jloLYhJpdUb3zeC8rhe5jg239h-uf6H58piaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29040644</pqid></control><display><type>article</type><title>Error estimation of numerical solutions of linear convection-diffusion problem</title><source>Taylor and Francis Science and Technology Collection</source><creator>Tanaka, Nobuatsu ; Motoyama, Yasunori</creator><creatorcontrib>Tanaka, Nobuatsu ; Motoyama, Yasunori</creatorcontrib><description>We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the finite-difference method of upwind and Lax-Wendroff schemes for the linear convection-diffusion problems. If a standard case of typical parameters is computed with the method, no additional computation is required to estimate the other numerical parameters' results such as more detailed solutions. Furthermore, we can quantitatively estimate the numerical error only from the sensitivity analysis results.</description><identifier>ISSN: 1061-8562</identifier><identifier>EISSN: 1029-0257</identifier><identifier>DOI: 10.1080/10618560412331286346</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Convection-diffusion problem ; Error estimation ; Lax-Wendroff scheme ; Sensitivity analysis ; Upwind scheme</subject><ispartof>International journal of computational fluid dynamics, 2005-01, Vol.19 (1), p.61-66</ispartof><rights>Copyright Taylor & Francis 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73</citedby><cites>FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tanaka, Nobuatsu</creatorcontrib><creatorcontrib>Motoyama, Yasunori</creatorcontrib><title>Error estimation of numerical solutions of linear convection-diffusion problem</title><title>International journal of computational fluid dynamics</title><description>We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the finite-difference method of upwind and Lax-Wendroff schemes for the linear convection-diffusion problems. If a standard case of typical parameters is computed with the method, no additional computation is required to estimate the other numerical parameters' results such as more detailed solutions. Furthermore, we can quantitatively estimate the numerical error only from the sensitivity analysis results.</description><subject>Convection-diffusion problem</subject><subject>Error estimation</subject><subject>Lax-Wendroff scheme</subject><subject>Sensitivity analysis</subject><subject>Upwind scheme</subject><issn>1061-8562</issn><issn>1029-0257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD7-gYuu3FVvHk1TNyLD-IBBN7oOSZpAJG3GpFXn39syLgdd3cvhfPdxELrAcIVBwDUGjkXFgWFCKSaCU8YP0AIDaUogVX049xyXk4cco5Oc3wGgIQIv0PMqpZgKmwffqcHHvoiu6MfOJm9UKHIM46zmWQ6-tyoVJvaf1sxq2XrnxjxTmxR1sN0ZOnIqZHv-W0_R2_3qdflYrl8enpZ369JQ0QylA01069pWUa5b3lirmRBYWYo1rmnFmspyWpmmNspREJRDRS02gDWtK1PTU3S5mzvt_Rin62Xns7EhqN7GMUvSAAPO2GRkO6NJMedkndyk6dO0lRjkHJ7cF96E3eww37uYOvUVU2jloLYhJpdUb3zeC8rhe5jg239h-uf6H58piaU</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Tanaka, Nobuatsu</creator><creator>Motoyama, Yasunori</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050101</creationdate><title>Error estimation of numerical solutions of linear convection-diffusion problem</title><author>Tanaka, Nobuatsu ; Motoyama, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Convection-diffusion problem</topic><topic>Error estimation</topic><topic>Lax-Wendroff scheme</topic><topic>Sensitivity analysis</topic><topic>Upwind scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Nobuatsu</creatorcontrib><creatorcontrib>Motoyama, Yasunori</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Nobuatsu</au><au>Motoyama, Yasunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error estimation of numerical solutions of linear convection-diffusion problem</atitle><jtitle>International journal of computational fluid dynamics</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>19</volume><issue>1</issue><spage>61</spage><epage>66</epage><pages>61-66</pages><issn>1061-8562</issn><eissn>1029-0257</eissn><abstract>We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the finite-difference method of upwind and Lax-Wendroff schemes for the linear convection-diffusion problems. If a standard case of typical parameters is computed with the method, no additional computation is required to estimate the other numerical parameters' results such as more detailed solutions. Furthermore, we can quantitatively estimate the numerical error only from the sensitivity analysis results.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/10618560412331286346</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8562 |
ispartof | International journal of computational fluid dynamics, 2005-01, Vol.19 (1), p.61-66 |
issn | 1061-8562 1029-0257 |
language | eng |
recordid | cdi_proquest_miscellaneous_29040644 |
source | Taylor and Francis Science and Technology Collection |
subjects | Convection-diffusion problem Error estimation Lax-Wendroff scheme Sensitivity analysis Upwind scheme |
title | Error estimation of numerical solutions of linear convection-diffusion problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20estimation%20of%20numerical%20solutions%20of%20linear%20convection-diffusion%20problem&rft.jtitle=International%20journal%20of%20computational%20fluid%20dynamics&rft.au=Tanaka,%20Nobuatsu&rft.date=2005-01-01&rft.volume=19&rft.issue=1&rft.spage=61&rft.epage=66&rft.pages=61-66&rft.issn=1061-8562&rft.eissn=1029-0257&rft_id=info:doi/10.1080/10618560412331286346&rft_dat=%3Cproquest_cross%3E29040644%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-f0b2bdfdda36bd69eeb4881ae31b1735495e635c97caf30836053e1c01b375c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29040644&rft_id=info:pmid/&rfr_iscdi=true |