Loading…
Space-resolved average kinetic energy of ion swarms in a uniform electric field
A pulse of noninteracting charged particles in an unbounded gas, exposed to a low, constant, homogeneous electric field, was studied in both space and time using a Monte Carlo simulation technique. The difference in electrical potential between the leading and trailing edges of the swarm results in...
Saved in:
Published in: | Physical review. E 2023-11, Vol.108 (5), p.L053202-L053202, Article L053202 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c256t-967d407d9dfcafef9f53ec5cd255f5d4c5bd923a8469730662db5a9186f108e13 |
container_end_page | L053202 |
container_issue | 5 |
container_start_page | L053202 |
container_title | Physical review. E |
container_volume | 108 |
creator | Raspopović, Z M |
description | A pulse of noninteracting charged particles in an unbounded gas, exposed to a low, constant, homogeneous electric field, was studied in both space and time using a Monte Carlo simulation technique. The difference in electrical potential between the leading and trailing edges of the swarm results in the space-resolved average ion kinetic energy becoming a linearly increasing function of space. This Letter analyzes whether the average ion kinetic energy at the leading edge reaches a stationary value during the spatiotemporal evolution of the swarm, as has been considered so far. When the swarm's mean kinetic energy reaches a steady-state value, indicating that an energy balance is established over time, the gains (from the field) and losses (due to collisions) are nonuniform across space. The local power balance is negative at the front of the swarm and positive at the tail. Cooling the ions at the front and heating the ions at the tail results in a decrease in the average ion kinetic energy at the front and an increase at the tail. Thus, it can be concluded that stationary values of average ion kinetic energy do not exist at the leading and trailing edges during the evolution. Instead, they tend to approach the swarm's mean kinetic energy as t→∞. |
doi_str_mv | 10.1103/PhysRevE.108.L053202 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904154641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904154641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-967d407d9dfcafef9f53ec5cd255f5d4c5bd923a8469730662db5a9186f108e13</originalsourceid><addsrcrecordid>eNo9kFlPAjEUhRujEYL8A2P66Mtg95k-GoJLQoJxeZ6U9hars2A7YPj3DgF5ukvOuTfnQ-iakgmlhN-9fO7SK2xnE0qKyZxIzgg7Q0MmcpKRfjw_9UIO0DilL0IIVUTnlF2iAS8olSKnQ7R4WxsLWYTUVltw2GwhmhXg79BAFyyGBuJqh1uPQ9vg9GtinXBosMGbJvg21hgqsF3spT5A5a7QhTdVgvGxjtDHw-x9-pTNF4_P0_t5ZplUXaZV7gTJnXbeGg9ee8nBSuuYlF46YeXSacZNIZTOOVGKuaU0mhbK94mB8hG6Pdxdx_ZnA6kr65AsVJVpoN2kkmki-ohK7KXiILWxTSmCL9cx1CbuSkrKPc3yn2a_KMojzd52c_ywWdbgTqZ_dvwP9PlyDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904154641</pqid></control><display><type>article</type><title>Space-resolved average kinetic energy of ion swarms in a uniform electric field</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Raspopović, Z M</creator><creatorcontrib>Raspopović, Z M</creatorcontrib><description>A pulse of noninteracting charged particles in an unbounded gas, exposed to a low, constant, homogeneous electric field, was studied in both space and time using a Monte Carlo simulation technique. The difference in electrical potential between the leading and trailing edges of the swarm results in the space-resolved average ion kinetic energy becoming a linearly increasing function of space. This Letter analyzes whether the average ion kinetic energy at the leading edge reaches a stationary value during the spatiotemporal evolution of the swarm, as has been considered so far. When the swarm's mean kinetic energy reaches a steady-state value, indicating that an energy balance is established over time, the gains (from the field) and losses (due to collisions) are nonuniform across space. The local power balance is negative at the front of the swarm and positive at the tail. Cooling the ions at the front and heating the ions at the tail results in a decrease in the average ion kinetic energy at the front and an increase at the tail. Thus, it can be concluded that stationary values of average ion kinetic energy do not exist at the leading and trailing edges during the evolution. Instead, they tend to approach the swarm's mean kinetic energy as t→∞.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.108.L053202</identifier><identifier>PMID: 38115471</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2023-11, Vol.108 (5), p.L053202-L053202, Article L053202</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-967d407d9dfcafef9f53ec5cd255f5d4c5bd923a8469730662db5a9186f108e13</cites><orcidid>0000-0001-6420-0851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38115471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raspopović, Z M</creatorcontrib><title>Space-resolved average kinetic energy of ion swarms in a uniform electric field</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>A pulse of noninteracting charged particles in an unbounded gas, exposed to a low, constant, homogeneous electric field, was studied in both space and time using a Monte Carlo simulation technique. The difference in electrical potential between the leading and trailing edges of the swarm results in the space-resolved average ion kinetic energy becoming a linearly increasing function of space. This Letter analyzes whether the average ion kinetic energy at the leading edge reaches a stationary value during the spatiotemporal evolution of the swarm, as has been considered so far. When the swarm's mean kinetic energy reaches a steady-state value, indicating that an energy balance is established over time, the gains (from the field) and losses (due to collisions) are nonuniform across space. The local power balance is negative at the front of the swarm and positive at the tail. Cooling the ions at the front and heating the ions at the tail results in a decrease in the average ion kinetic energy at the front and an increase at the tail. Thus, it can be concluded that stationary values of average ion kinetic energy do not exist at the leading and trailing edges during the evolution. Instead, they tend to approach the swarm's mean kinetic energy as t→∞.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kFlPAjEUhRujEYL8A2P66Mtg95k-GoJLQoJxeZ6U9hars2A7YPj3DgF5ukvOuTfnQ-iakgmlhN-9fO7SK2xnE0qKyZxIzgg7Q0MmcpKRfjw_9UIO0DilL0IIVUTnlF2iAS8olSKnQ7R4WxsLWYTUVltw2GwhmhXg79BAFyyGBuJqh1uPQ9vg9GtinXBosMGbJvg21hgqsF3spT5A5a7QhTdVgvGxjtDHw-x9-pTNF4_P0_t5ZplUXaZV7gTJnXbeGg9ee8nBSuuYlF46YeXSacZNIZTOOVGKuaU0mhbK94mB8hG6Pdxdx_ZnA6kr65AsVJVpoN2kkmki-ohK7KXiILWxTSmCL9cx1CbuSkrKPc3yn2a_KMojzd52c_ywWdbgTqZ_dvwP9PlyDQ</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Raspopović, Z M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6420-0851</orcidid></search><sort><creationdate>202311</creationdate><title>Space-resolved average kinetic energy of ion swarms in a uniform electric field</title><author>Raspopović, Z M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-967d407d9dfcafef9f53ec5cd255f5d4c5bd923a8469730662db5a9186f108e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raspopović, Z M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raspopović, Z M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-resolved average kinetic energy of ion swarms in a uniform electric field</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2023-11</date><risdate>2023</risdate><volume>108</volume><issue>5</issue><spage>L053202</spage><epage>L053202</epage><pages>L053202-L053202</pages><artnum>L053202</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>A pulse of noninteracting charged particles in an unbounded gas, exposed to a low, constant, homogeneous electric field, was studied in both space and time using a Monte Carlo simulation technique. The difference in electrical potential between the leading and trailing edges of the swarm results in the space-resolved average ion kinetic energy becoming a linearly increasing function of space. This Letter analyzes whether the average ion kinetic energy at the leading edge reaches a stationary value during the spatiotemporal evolution of the swarm, as has been considered so far. When the swarm's mean kinetic energy reaches a steady-state value, indicating that an energy balance is established over time, the gains (from the field) and losses (due to collisions) are nonuniform across space. The local power balance is negative at the front of the swarm and positive at the tail. Cooling the ions at the front and heating the ions at the tail results in a decrease in the average ion kinetic energy at the front and an increase at the tail. Thus, it can be concluded that stationary values of average ion kinetic energy do not exist at the leading and trailing edges during the evolution. Instead, they tend to approach the swarm's mean kinetic energy as t→∞.</abstract><cop>United States</cop><pmid>38115471</pmid><doi>10.1103/PhysRevE.108.L053202</doi><orcidid>https://orcid.org/0000-0001-6420-0851</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2023-11, Vol.108 (5), p.L053202-L053202, Article L053202 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2904154641 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Space-resolved average kinetic energy of ion swarms in a uniform electric field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-resolved%20average%20kinetic%20energy%20of%20ion%20swarms%20in%20a%20uniform%20electric%20field&rft.jtitle=Physical%20review.%20E&rft.au=Raspopovi%C4%87,%20Z%20M&rft.date=2023-11&rft.volume=108&rft.issue=5&rft.spage=L053202&rft.epage=L053202&rft.pages=L053202-L053202&rft.artnum=L053202&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.108.L053202&rft_dat=%3Cproquest_cross%3E2904154641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-967d407d9dfcafef9f53ec5cd255f5d4c5bd923a8469730662db5a9186f108e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904154641&rft_id=info:pmid/38115471&rfr_iscdi=true |