Loading…
Control of thermodynamic liquid-liquid phase transition in a fragility-tunable glassy model
We propose a distinguishable-particle glassy model suitable for the molecular dynamics simulation of structural glasses. This model can sensitively tune the kinetic fragility of supercooled liquids in a wide range by simply changing the distribution of particle interactions. In the model liquid, we...
Saved in:
Published in: | Physical review. E 2023-11, Vol.108 (5-2), p.055301-055301, Article 055301 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a distinguishable-particle glassy model suitable for the molecular dynamics simulation of structural glasses. This model can sensitively tune the kinetic fragility of supercooled liquids in a wide range by simply changing the distribution of particle interactions. In the model liquid, we observe the occurrence of thermodynamic liquid-liquid phase transitions above glass transition. The phase transition is facilitated by lowering fragility. Prior to the liquid-liquid phase transition, our simulations verify the existence of a constant-volume heat capacity maximum varying with fragility. We reveal the characteristics of the equilibrium potential energy landscape in liquids with different fragility. Within the Gaussian excitation model, the liquid-liquid transition as well as the response to fragility is reasonably interpreted in configuration space. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.108.055301 |