Loading…

Microbiome mediating methane and nitrogen transformations in a subterranean estuary

Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations througho...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2024-01, Vol.26 (1), p.e16558-n/a
Main Authors: Euler, Sebastian, Jeffrey, Luke C., Maher, Damien T., Johnston, Scott G., Sugimoto, Ryo, Tait, Douglas R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413
container_end_page n/a
container_issue 1
container_start_page e16558
container_title Environmental microbiology
container_volume 26
creator Euler, Sebastian
Jeffrey, Luke C.
Maher, Damien T.
Johnston, Scott G.
Sugimoto, Ryo
Tait, Douglas R.
description Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 μM, 273.31 ± 6.05 μM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia‐oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by >50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems. Our study reveals distinct microbial and biogeochemical zones in a subterranean estuary that can mediate transformations of the fluxes of greenhouse gases and nutrients. Contrary to common practices, relying solely on terrestrial endmembers to determine greenhouse gas and nutrient discharges to the coastal ocean may lead to overestimation, as our findings suggest that the microbiome in the subterranean estuary contributes to a significant reduction in greenhouse gas and nutrient loads.
doi_str_mv 10.1111/1462-2920.16558
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904156077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919307670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413</originalsourceid><addsrcrecordid>eNqFkM1PwyAYh4nRuDk9ezNNvHip46NAezTL1CVbPKhnQls6WVo6oY3Zf-87O3fwIgd4gYcf8CB0TfA9gTYliaAxzShMBefpCRofV06PNaEjdBHCBmMimcTnaMRSQjilbIxeV7bwbW7bxkSNKa3urFtD1X1oZyLtysjZzrdr46LOaxeq1jfAtC5E1kU6Cn3eGQ87RrvIhK7XfneJzipdB3N1GCfo_XH-NnuOly9Pi9nDMi6YEGnME5xJwQx0aUF4irXkJTYsSVlaCV0SXVXYJFhWNEsywWnJs0zzQpSsJHlC2ATdDblb3372cLlqbChMXcNr2j4omuGEcIGlBPT2D7ppe-_gdUCRjGEpJAZqOlCgJARvKrX1toEfKYLV3rfaG1V7u-rHN5y4OeT2Oeg78r-CAeAD8GVrs_svT81XiyH4G8X6iNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919307670</pqid></control><display><type>article</type><title>Microbiome mediating methane and nitrogen transformations in a subterranean estuary</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Euler, Sebastian ; Jeffrey, Luke C. ; Maher, Damien T. ; Johnston, Scott G. ; Sugimoto, Ryo ; Tait, Douglas R.</creator><creatorcontrib>Euler, Sebastian ; Jeffrey, Luke C. ; Maher, Damien T. ; Johnston, Scott G. ; Sugimoto, Ryo ; Tait, Douglas R.</creatorcontrib><description>Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 μM, 273.31 ± 6.05 μM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia‐oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by &gt;50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems. Our study reveals distinct microbial and biogeochemical zones in a subterranean estuary that can mediate transformations of the fluxes of greenhouse gases and nutrients. Contrary to common practices, relying solely on terrestrial endmembers to determine greenhouse gas and nutrient discharges to the coastal ocean may lead to overestimation, as our findings suggest that the microbiome in the subterranean estuary contributes to a significant reduction in greenhouse gas and nutrient loads.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.16558</identifier><identifier>PMID: 38115223</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Abundance ; Ammonia ; Ammonium ; Ammonium Compounds ; Biogeochemistry ; Carbon ; Carbon dioxide ; Coastal ecosystems ; Dissolved organic carbon ; Dissolved Organic Matter ; Estuaries ; Estuarine dynamics ; Fluxes ; Gases ; Greenhouse effect ; Greenhouse Gases ; Methane ; Methanogenic bacteria ; Microbial activity ; Microbiomes ; Microbiota - genetics ; Microorganisms ; Nitrification ; Nitrogen ; Nutrients ; Pore water ; Prokaryotes ; Relative abundance ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Small mammals ; Spatial distribution ; Transformations ; Zonation</subject><ispartof>Environmental microbiology, 2024-01, Vol.26 (1), p.e16558-n/a</ispartof><rights>2023 The Authors. published by Applied Microbiology International and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Environmental Microbiology published by Applied Microbiology International and John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413</cites><orcidid>0000-0001-9583-9009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38115223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Euler, Sebastian</creatorcontrib><creatorcontrib>Jeffrey, Luke C.</creatorcontrib><creatorcontrib>Maher, Damien T.</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Sugimoto, Ryo</creatorcontrib><creatorcontrib>Tait, Douglas R.</creatorcontrib><title>Microbiome mediating methane and nitrogen transformations in a subterranean estuary</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 μM, 273.31 ± 6.05 μM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia‐oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by &gt;50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems. Our study reveals distinct microbial and biogeochemical zones in a subterranean estuary that can mediate transformations of the fluxes of greenhouse gases and nutrients. Contrary to common practices, relying solely on terrestrial endmembers to determine greenhouse gas and nutrient discharges to the coastal ocean may lead to overestimation, as our findings suggest that the microbiome in the subterranean estuary contributes to a significant reduction in greenhouse gas and nutrient loads.</description><subject>Abundance</subject><subject>Ammonia</subject><subject>Ammonium</subject><subject>Ammonium Compounds</subject><subject>Biogeochemistry</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Coastal ecosystems</subject><subject>Dissolved organic carbon</subject><subject>Dissolved Organic Matter</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Fluxes</subject><subject>Gases</subject><subject>Greenhouse effect</subject><subject>Greenhouse Gases</subject><subject>Methane</subject><subject>Methanogenic bacteria</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microbiota - genetics</subject><subject>Microorganisms</subject><subject>Nitrification</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Pore water</subject><subject>Prokaryotes</subject><subject>Relative abundance</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Small mammals</subject><subject>Spatial distribution</subject><subject>Transformations</subject><subject>Zonation</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1PwyAYh4nRuDk9ezNNvHip46NAezTL1CVbPKhnQls6WVo6oY3Zf-87O3fwIgd4gYcf8CB0TfA9gTYliaAxzShMBefpCRofV06PNaEjdBHCBmMimcTnaMRSQjilbIxeV7bwbW7bxkSNKa3urFtD1X1oZyLtysjZzrdr46LOaxeq1jfAtC5E1kU6Cn3eGQ87RrvIhK7XfneJzipdB3N1GCfo_XH-NnuOly9Pi9nDMi6YEGnME5xJwQx0aUF4irXkJTYsSVlaCV0SXVXYJFhWNEsywWnJs0zzQpSsJHlC2ATdDblb3372cLlqbChMXcNr2j4omuGEcIGlBPT2D7ppe-_gdUCRjGEpJAZqOlCgJARvKrX1toEfKYLV3rfaG1V7u-rHN5y4OeT2Oeg78r-CAeAD8GVrs_svT81XiyH4G8X6iNk</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Euler, Sebastian</creator><creator>Jeffrey, Luke C.</creator><creator>Maher, Damien T.</creator><creator>Johnston, Scott G.</creator><creator>Sugimoto, Ryo</creator><creator>Tait, Douglas R.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9583-9009</orcidid></search><sort><creationdate>202401</creationdate><title>Microbiome mediating methane and nitrogen transformations in a subterranean estuary</title><author>Euler, Sebastian ; Jeffrey, Luke C. ; Maher, Damien T. ; Johnston, Scott G. ; Sugimoto, Ryo ; Tait, Douglas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abundance</topic><topic>Ammonia</topic><topic>Ammonium</topic><topic>Ammonium Compounds</topic><topic>Biogeochemistry</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Coastal ecosystems</topic><topic>Dissolved organic carbon</topic><topic>Dissolved Organic Matter</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Fluxes</topic><topic>Gases</topic><topic>Greenhouse effect</topic><topic>Greenhouse Gases</topic><topic>Methane</topic><topic>Methanogenic bacteria</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microbiota - genetics</topic><topic>Microorganisms</topic><topic>Nitrification</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Pore water</topic><topic>Prokaryotes</topic><topic>Relative abundance</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Small mammals</topic><topic>Spatial distribution</topic><topic>Transformations</topic><topic>Zonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Euler, Sebastian</creatorcontrib><creatorcontrib>Jeffrey, Luke C.</creatorcontrib><creatorcontrib>Maher, Damien T.</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Sugimoto, Ryo</creatorcontrib><creatorcontrib>Tait, Douglas R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Euler, Sebastian</au><au>Jeffrey, Luke C.</au><au>Maher, Damien T.</au><au>Johnston, Scott G.</au><au>Sugimoto, Ryo</au><au>Tait, Douglas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbiome mediating methane and nitrogen transformations in a subterranean estuary</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2024-01</date><risdate>2024</risdate><volume>26</volume><issue>1</issue><spage>e16558</spage><epage>n/a</epage><pages>e16558-n/a</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 μM, 273.31 ± 6.05 μM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia‐oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by &gt;50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems. Our study reveals distinct microbial and biogeochemical zones in a subterranean estuary that can mediate transformations of the fluxes of greenhouse gases and nutrients. Contrary to common practices, relying solely on terrestrial endmembers to determine greenhouse gas and nutrient discharges to the coastal ocean may lead to overestimation, as our findings suggest that the microbiome in the subterranean estuary contributes to a significant reduction in greenhouse gas and nutrient loads.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38115223</pmid><doi>10.1111/1462-2920.16558</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9583-9009</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2024-01, Vol.26 (1), p.e16558-n/a
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_2904156077
source Wiley-Blackwell Read & Publish Collection
subjects Abundance
Ammonia
Ammonium
Ammonium Compounds
Biogeochemistry
Carbon
Carbon dioxide
Coastal ecosystems
Dissolved organic carbon
Dissolved Organic Matter
Estuaries
Estuarine dynamics
Fluxes
Gases
Greenhouse effect
Greenhouse Gases
Methane
Methanogenic bacteria
Microbial activity
Microbiomes
Microbiota - genetics
Microorganisms
Nitrification
Nitrogen
Nutrients
Pore water
Prokaryotes
Relative abundance
RNA, Ribosomal, 16S - genetics
rRNA 16S
Small mammals
Spatial distribution
Transformations
Zonation
title Microbiome mediating methane and nitrogen transformations in a subterranean estuary
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbiome%20mediating%20methane%20and%20nitrogen%20transformations%20in%20a%20subterranean%20estuary&rft.jtitle=Environmental%20microbiology&rft.au=Euler,%20Sebastian&rft.date=2024-01&rft.volume=26&rft.issue=1&rft.spage=e16558&rft.epage=n/a&rft.pages=e16558-n/a&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.16558&rft_dat=%3Cproquest_cross%3E2919307670%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919307670&rft_id=info:pmid/38115223&rfr_iscdi=true