Loading…
Microbiome mediating methane and nitrogen transformations in a subterranean estuary
Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations througho...
Saved in:
Published in: | Environmental microbiology 2024-01, Vol.26 (1), p.e16558-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | e16558 |
container_title | Environmental microbiology |
container_volume | 26 |
creator | Euler, Sebastian Jeffrey, Luke C. Maher, Damien T. Johnston, Scott G. Sugimoto, Ryo Tait, Douglas R. |
description | Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 μM, 273.31 ± 6.05 μM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia‐oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by >50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems.
Our study reveals distinct microbial and biogeochemical zones in a subterranean estuary that can mediate transformations of the fluxes of greenhouse gases and nutrients. Contrary to common practices, relying solely on terrestrial endmembers to determine greenhouse gas and nutrient discharges to the coastal ocean may lead to overestimation, as our findings suggest that the microbiome in the subterranean estuary contributes to a significant reduction in greenhouse gas and nutrient loads. |
doi_str_mv | 10.1111/1462-2920.16558 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904156077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919307670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413</originalsourceid><addsrcrecordid>eNqFkM1PwyAYh4nRuDk9ezNNvHip46NAezTL1CVbPKhnQls6WVo6oY3Zf-87O3fwIgd4gYcf8CB0TfA9gTYliaAxzShMBefpCRofV06PNaEjdBHCBmMimcTnaMRSQjilbIxeV7bwbW7bxkSNKa3urFtD1X1oZyLtysjZzrdr46LOaxeq1jfAtC5E1kU6Cn3eGQ87RrvIhK7XfneJzipdB3N1GCfo_XH-NnuOly9Pi9nDMi6YEGnME5xJwQx0aUF4irXkJTYsSVlaCV0SXVXYJFhWNEsywWnJs0zzQpSsJHlC2ATdDblb3372cLlqbChMXcNr2j4omuGEcIGlBPT2D7ppe-_gdUCRjGEpJAZqOlCgJARvKrX1toEfKYLV3rfaG1V7u-rHN5y4OeT2Oeg78r-CAeAD8GVrs_svT81XiyH4G8X6iNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919307670</pqid></control><display><type>article</type><title>Microbiome mediating methane and nitrogen transformations in a subterranean estuary</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Euler, Sebastian ; Jeffrey, Luke C. ; Maher, Damien T. ; Johnston, Scott G. ; Sugimoto, Ryo ; Tait, Douglas R.</creator><creatorcontrib>Euler, Sebastian ; Jeffrey, Luke C. ; Maher, Damien T. ; Johnston, Scott G. ; Sugimoto, Ryo ; Tait, Douglas R.</creatorcontrib><description>Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 μM, 273.31 ± 6.05 μM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia‐oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by >50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems.
Our study reveals distinct microbial and biogeochemical zones in a subterranean estuary that can mediate transformations of the fluxes of greenhouse gases and nutrients. Contrary to common practices, relying solely on terrestrial endmembers to determine greenhouse gas and nutrient discharges to the coastal ocean may lead to overestimation, as our findings suggest that the microbiome in the subterranean estuary contributes to a significant reduction in greenhouse gas and nutrient loads.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.16558</identifier><identifier>PMID: 38115223</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Abundance ; Ammonia ; Ammonium ; Ammonium Compounds ; Biogeochemistry ; Carbon ; Carbon dioxide ; Coastal ecosystems ; Dissolved organic carbon ; Dissolved Organic Matter ; Estuaries ; Estuarine dynamics ; Fluxes ; Gases ; Greenhouse effect ; Greenhouse Gases ; Methane ; Methanogenic bacteria ; Microbial activity ; Microbiomes ; Microbiota - genetics ; Microorganisms ; Nitrification ; Nitrogen ; Nutrients ; Pore water ; Prokaryotes ; Relative abundance ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Small mammals ; Spatial distribution ; Transformations ; Zonation</subject><ispartof>Environmental microbiology, 2024-01, Vol.26 (1), p.e16558-n/a</ispartof><rights>2023 The Authors. published by Applied Microbiology International and John Wiley & Sons Ltd.</rights><rights>2023 The Authors. Environmental Microbiology published by Applied Microbiology International and John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413</cites><orcidid>0000-0001-9583-9009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38115223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Euler, Sebastian</creatorcontrib><creatorcontrib>Jeffrey, Luke C.</creatorcontrib><creatorcontrib>Maher, Damien T.</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Sugimoto, Ryo</creatorcontrib><creatorcontrib>Tait, Douglas R.</creatorcontrib><title>Microbiome mediating methane and nitrogen transformations in a subterranean estuary</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 μM, 273.31 ± 6.05 μM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia‐oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by >50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems.
Our study reveals distinct microbial and biogeochemical zones in a subterranean estuary that can mediate transformations of the fluxes of greenhouse gases and nutrients. Contrary to common practices, relying solely on terrestrial endmembers to determine greenhouse gas and nutrient discharges to the coastal ocean may lead to overestimation, as our findings suggest that the microbiome in the subterranean estuary contributes to a significant reduction in greenhouse gas and nutrient loads.</description><subject>Abundance</subject><subject>Ammonia</subject><subject>Ammonium</subject><subject>Ammonium Compounds</subject><subject>Biogeochemistry</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Coastal ecosystems</subject><subject>Dissolved organic carbon</subject><subject>Dissolved Organic Matter</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Fluxes</subject><subject>Gases</subject><subject>Greenhouse effect</subject><subject>Greenhouse Gases</subject><subject>Methane</subject><subject>Methanogenic bacteria</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microbiota - genetics</subject><subject>Microorganisms</subject><subject>Nitrification</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Pore water</subject><subject>Prokaryotes</subject><subject>Relative abundance</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Small mammals</subject><subject>Spatial distribution</subject><subject>Transformations</subject><subject>Zonation</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1PwyAYh4nRuDk9ezNNvHip46NAezTL1CVbPKhnQls6WVo6oY3Zf-87O3fwIgd4gYcf8CB0TfA9gTYliaAxzShMBefpCRofV06PNaEjdBHCBmMimcTnaMRSQjilbIxeV7bwbW7bxkSNKa3urFtD1X1oZyLtysjZzrdr46LOaxeq1jfAtC5E1kU6Cn3eGQ87RrvIhK7XfneJzipdB3N1GCfo_XH-NnuOly9Pi9nDMi6YEGnME5xJwQx0aUF4irXkJTYsSVlaCV0SXVXYJFhWNEsywWnJs0zzQpSsJHlC2ATdDblb3372cLlqbChMXcNr2j4omuGEcIGlBPT2D7ppe-_gdUCRjGEpJAZqOlCgJARvKrX1toEfKYLV3rfaG1V7u-rHN5y4OeT2Oeg78r-CAeAD8GVrs_svT81XiyH4G8X6iNk</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Euler, Sebastian</creator><creator>Jeffrey, Luke C.</creator><creator>Maher, Damien T.</creator><creator>Johnston, Scott G.</creator><creator>Sugimoto, Ryo</creator><creator>Tait, Douglas R.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9583-9009</orcidid></search><sort><creationdate>202401</creationdate><title>Microbiome mediating methane and nitrogen transformations in a subterranean estuary</title><author>Euler, Sebastian ; Jeffrey, Luke C. ; Maher, Damien T. ; Johnston, Scott G. ; Sugimoto, Ryo ; Tait, Douglas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abundance</topic><topic>Ammonia</topic><topic>Ammonium</topic><topic>Ammonium Compounds</topic><topic>Biogeochemistry</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Coastal ecosystems</topic><topic>Dissolved organic carbon</topic><topic>Dissolved Organic Matter</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Fluxes</topic><topic>Gases</topic><topic>Greenhouse effect</topic><topic>Greenhouse Gases</topic><topic>Methane</topic><topic>Methanogenic bacteria</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microbiota - genetics</topic><topic>Microorganisms</topic><topic>Nitrification</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Pore water</topic><topic>Prokaryotes</topic><topic>Relative abundance</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Small mammals</topic><topic>Spatial distribution</topic><topic>Transformations</topic><topic>Zonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Euler, Sebastian</creatorcontrib><creatorcontrib>Jeffrey, Luke C.</creatorcontrib><creatorcontrib>Maher, Damien T.</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Sugimoto, Ryo</creatorcontrib><creatorcontrib>Tait, Douglas R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Euler, Sebastian</au><au>Jeffrey, Luke C.</au><au>Maher, Damien T.</au><au>Johnston, Scott G.</au><au>Sugimoto, Ryo</au><au>Tait, Douglas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbiome mediating methane and nitrogen transformations in a subterranean estuary</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2024-01</date><risdate>2024</risdate><volume>26</volume><issue>1</issue><spage>e16558</spage><epage>n/a</epage><pages>e16558-n/a</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 μM, 273.31 ± 6.05 μM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia‐oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by >50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems.
Our study reveals distinct microbial and biogeochemical zones in a subterranean estuary that can mediate transformations of the fluxes of greenhouse gases and nutrients. Contrary to common practices, relying solely on terrestrial endmembers to determine greenhouse gas and nutrient discharges to the coastal ocean may lead to overestimation, as our findings suggest that the microbiome in the subterranean estuary contributes to a significant reduction in greenhouse gas and nutrient loads.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38115223</pmid><doi>10.1111/1462-2920.16558</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9583-9009</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2024-01, Vol.26 (1), p.e16558-n/a |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_2904156077 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Abundance Ammonia Ammonium Ammonium Compounds Biogeochemistry Carbon Carbon dioxide Coastal ecosystems Dissolved organic carbon Dissolved Organic Matter Estuaries Estuarine dynamics Fluxes Gases Greenhouse effect Greenhouse Gases Methane Methanogenic bacteria Microbial activity Microbiomes Microbiota - genetics Microorganisms Nitrification Nitrogen Nutrients Pore water Prokaryotes Relative abundance RNA, Ribosomal, 16S - genetics rRNA 16S Small mammals Spatial distribution Transformations Zonation |
title | Microbiome mediating methane and nitrogen transformations in a subterranean estuary |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbiome%20mediating%20methane%20and%20nitrogen%20transformations%20in%20a%20subterranean%20estuary&rft.jtitle=Environmental%20microbiology&rft.au=Euler,%20Sebastian&rft.date=2024-01&rft.volume=26&rft.issue=1&rft.spage=e16558&rft.epage=n/a&rft.pages=e16558-n/a&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.16558&rft_dat=%3Cproquest_cross%3E2919307670%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3668-5409763e9768c1580a75d0e34838f6ad1aff0e407f2949652d599a5c6d3d1b413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919307670&rft_id=info:pmid/38115223&rfr_iscdi=true |