Loading…
Development and early testing of a simple, low cost, fast sensor for maternal and neonatal group B Streptococcus
Streptococcus agalactiae, (Group B Streptococcus (GBS)), is a common colonizer of the female vagina. In women giving birth it can be transmitted to the baby and cause serious illness and even death to the child. We have developed a biosensor comprising of phospholipids and fatty acids vesicles encap...
Saved in:
Published in: | Biosensors & bioelectronics 2024-03, Vol.247, p.115923-115923, Article 115923 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Streptococcus agalactiae, (Group B Streptococcus (GBS)), is a common colonizer of the female vagina. In women giving birth it can be transmitted to the baby and cause serious illness and even death to the child. We have developed a biosensor comprising of phospholipids and fatty acids vesicles encapsulating high concentration, self-quenched carboxyfluorescein, which is released by the lysis of the vesicle by virulence factors expressed by GBS, becoming diluted and fluorescent. The microbial specificity of the sensor was tested against a number of GBS strains and other microbes including Candida albicans, Enterococcus faecalis and Staphylococcus epidermidis and a statistically significant response to GBS measured over these other microbes. To test the invivo efficacy of the biosensor, a pilot study using donated lower vaginal swabs from non-pregnant women was conducted, where 58 female adults were recruited. Participants donated two swabs, one which was used for the vesicle test and one for the ‘gold standard’, enriched culture media (ECM) test. An overall GBS carriage rate of 17.2% was measured using the ECM test. The vesicle biosensor test took 45 min to obtain a result, and showed a sensitivity of 83.3%, specificity of 85.7% and accuracy of 85.3%. The test accuracy is in line with current novel GBS identification tests, with the advantage of being rapid, easy to use, low-cost and able to be conducted by bedside during start of labour.
[Display omitted]
•Group B Streptococcus (GBS) cause the majority of neonatal infections globally.•Current detection methods are time consuming and cannot be done at bedside.•Phospholipid vesicles encapsulating a self-quenched dye can detect GBS virulence factors.•Phospholipid vesicles detect GBS colonisation in |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2023.115923 |