Loading…

Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast

Abstract Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4–Msh5 heterodimer is an evolutionarily conserved mismatch repair–related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Hol...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 2024-03, Vol.226 (3)
Main Authors: Dash, Suman, Joshi, Sameer, Pankajam, Ajith V, Shinohara, Akira, Nishant, Koodali T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c316t-d3d14105263da055c6dde4ade3443306b24c9d0714b0d09a27dc8dbbd797b7703
container_end_page
container_issue 3
container_start_page
container_title Genetics (Austin)
container_volume 226
creator Dash, Suman
Joshi, Sameer
Pankajam, Ajith V
Shinohara, Akira
Nishant, Koodali T
description Abstract Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4–Msh5 heterodimer is an evolutionarily conserved mismatch repair–related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Holliday junctions. In vivo studies using homozygous strains of the baker's yeast Saccharomyces cerevisiae (SK1) show that the Msh4–Msh5 complex associates with double-strand break hotspots, chromosome axes, and centromeres. Many organisms have heterozygous genomes that can affect the stability of strand invasion intermediates through heteroduplex rejection of mismatch-containing sequences. To examine Msh4–Msh5 function in a heterozygous context, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) analysis in a rapidly sporulating hybrid S. cerevisiae strain (S288c-sp/YJM789, containing sporulation-enhancing QTLs from SK1), using SNP information to distinguish reads from homologous chromosomes. Overall, Msh5 localization in this hybrid strain was similar to that determined in the homozygous strain (SK1). However, relative Msh5 levels were reduced in regions of high heterozygosity, suggesting that high mismatch densities reduce levels of recombination intermediates to which Msh4–Msh5 binds. Msh5 peaks were also wider in the hybrid background compared to the homozygous strain (SK1). We determined regions containing heteroduplex DNA by detecting chimeric sequence reads with SNPs from both parents. Msh5-bound double-strand break hotspots overlap with regions that have chimeric DNA, consistent with Msh5 binding to heteroduplex-containing recombination intermediates.
doi_str_mv 10.1093/genetics/iyad214
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904575347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/genetics/iyad214</oup_id><sourcerecordid>3113464070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d3d14105263da055c6dde4ade3443306b24c9d0714b0d09a27dc8dbbd797b7703</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EoqWwMyFLDCCh0HPsxM2IKqBIBRaYIye-ti5NXGxnCL-eQFuEWJjuTvreu6dHyCmDawYZH86xxmBKPzSt0jETe6TPMsGjOOVs_9feI0feLwEgzZLRIenxEYsFz-I-eZpgQGc_2rn1JrRUrbrT00e_SGhham3qOQ2WVmhs94iWC2cr622FnpqahgXSQr2hu_C0ReXDMTmYqZXHk-0ckNe725fxJJo-3z-Mb6ZRyVkaIs01EwySLptWkCRlqjUKpZELwTmkRSzKTINkogANmYqlLke6KLTMZCEl8AG53PiunX1v0Ie8Mr7E1UrVaBufxxmIRCZcyA49_4MubePqLl3OGeMiFfBtCBuqdNZ7h7N87UylXJszyL-6zndd59uuO8nZ1rgpKtQ_gl25HXC1AWyz_t_uE61wi_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113464070</pqid></control><display><type>article</type><title>Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast</title><source>Oxford Journals Online</source><creator>Dash, Suman ; Joshi, Sameer ; Pankajam, Ajith V ; Shinohara, Akira ; Nishant, Koodali T</creator><contributor>MacQueen, A</contributor><creatorcontrib>Dash, Suman ; Joshi, Sameer ; Pankajam, Ajith V ; Shinohara, Akira ; Nishant, Koodali T ; MacQueen, A</creatorcontrib><description>Abstract Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4–Msh5 heterodimer is an evolutionarily conserved mismatch repair–related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Holliday junctions. In vivo studies using homozygous strains of the baker's yeast Saccharomyces cerevisiae (SK1) show that the Msh4–Msh5 complex associates with double-strand break hotspots, chromosome axes, and centromeres. Many organisms have heterozygous genomes that can affect the stability of strand invasion intermediates through heteroduplex rejection of mismatch-containing sequences. To examine Msh4–Msh5 function in a heterozygous context, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) analysis in a rapidly sporulating hybrid S. cerevisiae strain (S288c-sp/YJM789, containing sporulation-enhancing QTLs from SK1), using SNP information to distinguish reads from homologous chromosomes. Overall, Msh5 localization in this hybrid strain was similar to that determined in the homozygous strain (SK1). However, relative Msh5 levels were reduced in regions of high heterozygosity, suggesting that high mismatch densities reduce levels of recombination intermediates to which Msh4–Msh5 binds. Msh5 peaks were also wider in the hybrid background compared to the homozygous strain (SK1). We determined regions containing heteroduplex DNA by detecting chimeric sequence reads with SNPs from both parents. Msh5-bound double-strand break hotspots overlap with regions that have chimeric DNA, consistent with Msh5 binding to heteroduplex-containing recombination intermediates.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/iyad214</identifier><identifier>PMID: 38124392</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Baking yeast ; Binding ; Centromeres ; Chromatin ; Chromosomes ; Crossing Over, Genetic ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA, Cruciform - metabolism ; Double-strand break repair ; Gene sequencing ; Heterozygosity ; Holliday junctions ; Immunoprecipitation ; In vivo methods and tests ; Intermediates ; Localization ; Meiosis ; Meiosis - genetics ; Mismatch repair ; Nucleotide sequence ; Recombination hot spots ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Single-nucleotide polymorphism ; Sporulation ; Strain analysis ; Yeast ; Yeasts</subject><ispartof>Genetics (Austin), 2024-03, Vol.226 (3)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c316t-d3d14105263da055c6dde4ade3443306b24c9d0714b0d09a27dc8dbbd797b7703</cites><orcidid>0000-0003-4207-8247 ; 0000-0002-0098-595X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38124392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>MacQueen, A</contributor><creatorcontrib>Dash, Suman</creatorcontrib><creatorcontrib>Joshi, Sameer</creatorcontrib><creatorcontrib>Pankajam, Ajith V</creatorcontrib><creatorcontrib>Shinohara, Akira</creatorcontrib><creatorcontrib>Nishant, Koodali T</creatorcontrib><title>Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Abstract Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4–Msh5 heterodimer is an evolutionarily conserved mismatch repair–related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Holliday junctions. In vivo studies using homozygous strains of the baker's yeast Saccharomyces cerevisiae (SK1) show that the Msh4–Msh5 complex associates with double-strand break hotspots, chromosome axes, and centromeres. Many organisms have heterozygous genomes that can affect the stability of strand invasion intermediates through heteroduplex rejection of mismatch-containing sequences. To examine Msh4–Msh5 function in a heterozygous context, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) analysis in a rapidly sporulating hybrid S. cerevisiae strain (S288c-sp/YJM789, containing sporulation-enhancing QTLs from SK1), using SNP information to distinguish reads from homologous chromosomes. Overall, Msh5 localization in this hybrid strain was similar to that determined in the homozygous strain (SK1). However, relative Msh5 levels were reduced in regions of high heterozygosity, suggesting that high mismatch densities reduce levels of recombination intermediates to which Msh4–Msh5 binds. Msh5 peaks were also wider in the hybrid background compared to the homozygous strain (SK1). We determined regions containing heteroduplex DNA by detecting chimeric sequence reads with SNPs from both parents. Msh5-bound double-strand break hotspots overlap with regions that have chimeric DNA, consistent with Msh5 binding to heteroduplex-containing recombination intermediates.</description><subject>Baking yeast</subject><subject>Binding</subject><subject>Centromeres</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Crossing Over, Genetic</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA, Cruciform - metabolism</subject><subject>Double-strand break repair</subject><subject>Gene sequencing</subject><subject>Heterozygosity</subject><subject>Holliday junctions</subject><subject>Immunoprecipitation</subject><subject>In vivo methods and tests</subject><subject>Intermediates</subject><subject>Localization</subject><subject>Meiosis</subject><subject>Meiosis - genetics</subject><subject>Mismatch repair</subject><subject>Nucleotide sequence</subject><subject>Recombination hot spots</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Single-nucleotide polymorphism</subject><subject>Sporulation</subject><subject>Strain analysis</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EoqWwMyFLDCCh0HPsxM2IKqBIBRaYIye-ti5NXGxnCL-eQFuEWJjuTvreu6dHyCmDawYZH86xxmBKPzSt0jETe6TPMsGjOOVs_9feI0feLwEgzZLRIenxEYsFz-I-eZpgQGc_2rn1JrRUrbrT00e_SGhham3qOQ2WVmhs94iWC2cr622FnpqahgXSQr2hu_C0ReXDMTmYqZXHk-0ckNe725fxJJo-3z-Mb6ZRyVkaIs01EwySLptWkCRlqjUKpZELwTmkRSzKTINkogANmYqlLke6KLTMZCEl8AG53PiunX1v0Ie8Mr7E1UrVaBufxxmIRCZcyA49_4MubePqLl3OGeMiFfBtCBuqdNZ7h7N87UylXJszyL-6zndd59uuO8nZ1rgpKtQ_gl25HXC1AWyz_t_uE61wi_s</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Dash, Suman</creator><creator>Joshi, Sameer</creator><creator>Pankajam, Ajith V</creator><creator>Shinohara, Akira</creator><creator>Nishant, Koodali T</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4207-8247</orcidid><orcidid>https://orcid.org/0000-0002-0098-595X</orcidid></search><sort><creationdate>20240306</creationdate><title>Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast</title><author>Dash, Suman ; Joshi, Sameer ; Pankajam, Ajith V ; Shinohara, Akira ; Nishant, Koodali T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d3d14105263da055c6dde4ade3443306b24c9d0714b0d09a27dc8dbbd797b7703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Baking yeast</topic><topic>Binding</topic><topic>Centromeres</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Crossing Over, Genetic</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA, Cruciform - metabolism</topic><topic>Double-strand break repair</topic><topic>Gene sequencing</topic><topic>Heterozygosity</topic><topic>Holliday junctions</topic><topic>Immunoprecipitation</topic><topic>In vivo methods and tests</topic><topic>Intermediates</topic><topic>Localization</topic><topic>Meiosis</topic><topic>Meiosis - genetics</topic><topic>Mismatch repair</topic><topic>Nucleotide sequence</topic><topic>Recombination hot spots</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Single-nucleotide polymorphism</topic><topic>Sporulation</topic><topic>Strain analysis</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dash, Suman</creatorcontrib><creatorcontrib>Joshi, Sameer</creatorcontrib><creatorcontrib>Pankajam, Ajith V</creatorcontrib><creatorcontrib>Shinohara, Akira</creatorcontrib><creatorcontrib>Nishant, Koodali T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dash, Suman</au><au>Joshi, Sameer</au><au>Pankajam, Ajith V</au><au>Shinohara, Akira</au><au>Nishant, Koodali T</au><au>MacQueen, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2024-03-06</date><risdate>2024</risdate><volume>226</volume><issue>3</issue><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Abstract Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4–Msh5 heterodimer is an evolutionarily conserved mismatch repair–related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Holliday junctions. In vivo studies using homozygous strains of the baker's yeast Saccharomyces cerevisiae (SK1) show that the Msh4–Msh5 complex associates with double-strand break hotspots, chromosome axes, and centromeres. Many organisms have heterozygous genomes that can affect the stability of strand invasion intermediates through heteroduplex rejection of mismatch-containing sequences. To examine Msh4–Msh5 function in a heterozygous context, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) analysis in a rapidly sporulating hybrid S. cerevisiae strain (S288c-sp/YJM789, containing sporulation-enhancing QTLs from SK1), using SNP information to distinguish reads from homologous chromosomes. Overall, Msh5 localization in this hybrid strain was similar to that determined in the homozygous strain (SK1). However, relative Msh5 levels were reduced in regions of high heterozygosity, suggesting that high mismatch densities reduce levels of recombination intermediates to which Msh4–Msh5 binds. Msh5 peaks were also wider in the hybrid background compared to the homozygous strain (SK1). We determined regions containing heteroduplex DNA by detecting chimeric sequence reads with SNPs from both parents. Msh5-bound double-strand break hotspots overlap with regions that have chimeric DNA, consistent with Msh5 binding to heteroduplex-containing recombination intermediates.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>38124392</pmid><doi>10.1093/genetics/iyad214</doi><orcidid>https://orcid.org/0000-0003-4207-8247</orcidid><orcidid>https://orcid.org/0000-0002-0098-595X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2024-03, Vol.226 (3)
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_proquest_miscellaneous_2904575347
source Oxford Journals Online
subjects Baking yeast
Binding
Centromeres
Chromatin
Chromosomes
Crossing Over, Genetic
Deoxyribonucleic acid
DNA
DNA damage
DNA, Cruciform - metabolism
Double-strand break repair
Gene sequencing
Heterozygosity
Holliday junctions
Immunoprecipitation
In vivo methods and tests
Intermediates
Localization
Meiosis
Meiosis - genetics
Mismatch repair
Nucleotide sequence
Recombination hot spots
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Single-nucleotide polymorphism
Sporulation
Strain analysis
Yeast
Yeasts
title Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterozygosity%20alters%20Msh5%20binding%20to%20meiotic%20chromosomes%20in%20the%20baker's%20yeast&rft.jtitle=Genetics%20(Austin)&rft.au=Dash,%20Suman&rft.date=2024-03-06&rft.volume=226&rft.issue=3&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1093/genetics/iyad214&rft_dat=%3Cproquest_cross%3E3113464070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-d3d14105263da055c6dde4ade3443306b24c9d0714b0d09a27dc8dbbd797b7703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3113464070&rft_id=info:pmid/38124392&rft_oup_id=10.1093/genetics/iyad214&rfr_iscdi=true