Loading…
Supporting dynamic data structures on distributed-memory machines
Compiling for distributed-memory machines has been a very active research area in recent years. Much of this work has concentrated on programs that use arrays as their primary data structures. To date, little work has been done to address the problem of supporting programs that use pointer-based dyn...
Saved in:
Published in: | ACM transactions on programming languages and systems 1995-03, Vol.17 (2), p.233-263 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compiling for distributed-memory machines has been a very active research area in recent years. Much of this work has concentrated on programs that use arrays as their primary data structures. To date, little work has been done to address the problem of supporting programs that use pointer-based dynamic data structures. The techniques developed for supporting SPMD execution of array-based programs rely on the fact that arrays are statically defined and directly addressable. Recursive data structures do not have these properties, so new techniques must be developed. In this article, we describe an execution model for supporting programs that use pointer-based dynamic data structures. This model uses a simple mechanism for migrating a thread of control based on the layout of heap-allocated data and introduces parallelism using a technique based on futures and lazy task creation. We intend to exploit this execution model using compiler analyses and automatic parallelization techniques. We have implemented a prototype system, which we call Olden, that runs on the Intel iPSC/860 and the Thinking Machines CM-5. We discuss our implementation and report on experiments with five benchmarks. |
---|---|
ISSN: | 0164-0925 1558-4593 |
DOI: | 10.1145/201059.201065 |