Loading…

Establishing pairwise keys in distributed sensor networks

Pairwise key establishment is a fundamental security service in sensor networks; it enables sensor nodes to communicate securely with each other using cryptographic techniques. However, due to the resource constraints on sensor nodes, it is not feasible to use traditional key management techniques s...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on information and system security 2005-02, Vol.8 (1), p.41-77
Main Authors: Liu, Donggang, Ning, Peng, Li, Rongfang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pairwise key establishment is a fundamental security service in sensor networks; it enables sensor nodes to communicate securely with each other using cryptographic techniques. However, due to the resource constraints on sensor nodes, it is not feasible to use traditional key management techniques such as public key cryptography and key distribution center (KDC). A number of key predistribution techniques have been proposed for pairwise key establishment in sensor networks recently. To facilitate the study of novel pairwise key predistribution techniques, this paper develops a general framework for establishing pairwise keys between sensor nodes using bivariate polynomials. This paper then proposes two efficient instantiations of the general framework: a random subset assignment key predistribution scheme, and a hypercube-based key predistribution scheme. The analysis shows that both schemes have a number of nice properties, including high probability, or guarantee to establish pairwise keys, tolerance of node captures, and low storage, communication, and computation overhead. To further reduce the computation at sensor nodes, this paper presents an optimization technique for polynomial evaluation, which is used to compute pairwise keys. This paper also reports the implementation and the performance of the proposed schemes on MICA2 motes running TinyOS, an operating system for networked sensors. The results indicate that the proposed techniques can be applied efficiently in resource-constrained sensor networks.
ISSN:1094-9224
2471-2566
1557-7406
2471-2574
DOI:10.1145/1053283.1053287