Loading…
Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back
A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative s...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2023-12, Vol.382 (6677), p.eadi1407-eadi1407 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3 |
container_end_page | eadi1407 |
container_issue | 6677 |
container_start_page | eadi1407 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 382 |
creator | Koscher, Brent A Canty, Richard B McDonald, Matthew A Greenman, Kevin P McGill, Charles J Bilodeau, Camille L Jin, Wengong Wu, Haoyang Vermeire, Florence H Jin, Brooke Hart, Travis Kulesza, Timothy Li, Shih-Cheng Jaakkola, Tommi S Barzilay, Regina Gómez-Bombarelli, Rafael Green, William H Jensen, Klavs F |
description | A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space. |
doi_str_mv | 10.1126/science.adi1407 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2905514676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2905514676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EouVjZkOWWBhIOX_FDRtCFJAqscAcOfZVSonjYieV-u8xojCwnId7_Oq9h5ALBjPGeHmbbIu9xZlxLZOgD8iUQaWKioM4JFMAURZz0GpCTlJaA-RdJY7JRMwZ11rIKanvxyH0wYcx3VA_dkO7iWGDcdgVLrZb7KkPHdqxM5G6Ntmwxbi7o4sYPN1EdK0d2tAnOgTq0aQxosd-SNT0jjbGfpyRo5XpEp7v31Pyvnh8e3gulq9PLw_3y8IKrobCOQ6slA1oiUK6uWEAmpe6mZdOStYIzTgDYcE2lRKKMbVSdiW5EKWrLLfilFz_5Ob6nyOmofa5LXad6THfVvMKlGKy1GVGr_6h6zDGPrf7pnJmnjpTtz-UjSGliKt6E1tv4q5mUH-7r_fu6737_ONynzs2Ht0f_ytbfAF6aoHi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904232907</pqid></control><display><type>article</type><title>Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Koscher, Brent A ; Canty, Richard B ; McDonald, Matthew A ; Greenman, Kevin P ; McGill, Charles J ; Bilodeau, Camille L ; Jin, Wengong ; Wu, Haoyang ; Vermeire, Florence H ; Jin, Brooke ; Hart, Travis ; Kulesza, Timothy ; Li, Shih-Cheng ; Jaakkola, Tommi S ; Barzilay, Regina ; Gómez-Bombarelli, Rafael ; Green, William H ; Jensen, Klavs F</creator><creatorcontrib>Koscher, Brent A ; Canty, Richard B ; McDonald, Matthew A ; Greenman, Kevin P ; McGill, Charles J ; Bilodeau, Camille L ; Jin, Wengong ; Wu, Haoyang ; Vermeire, Florence H ; Jin, Brooke ; Hart, Travis ; Kulesza, Timothy ; Li, Shih-Cheng ; Jaakkola, Tommi S ; Barzilay, Regina ; Gómez-Bombarelli, Rafael ; Green, William H ; Jensen, Klavs F</creatorcontrib><description>A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adi1407</identifier><identifier>PMID: 38127734</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Absorption ; Absorption spectra ; Algorithms ; Artificial Intelligence ; Automation ; Batch reactors ; Case Studies ; Chemical synthesis ; Chemistry ; Closed loops ; Dyes ; Errors ; Experimentation ; Exploitation ; High performance liquid chromatography ; Iterative methods ; Learning algorithms ; Light sources ; Liquid chromatography ; Literary Devices ; Machine learning ; Molecular properties ; Octanol ; Octanol-water partition coefficients ; Optimization ; Organic Chemistry ; Platforms ; Prediction models ; Reconfiguration ; Robot arms ; Robot learning ; Robotics ; Scaffolds ; Stability ; Workflow</subject><ispartof>Science (American Association for the Advancement of Science), 2023-12, Vol.382 (6677), p.eadi1407-eadi1407</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3</citedby><cites>FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3</cites><orcidid>0000-0002-9495-8599 ; 0000-0001-8233-0852 ; 0000-0001-7192-580X ; 0000-0001-8645-0034 ; 0000-0002-5607-8152 ; 0000-0002-9444-3253 ; 0000-0002-8358-5280 ; 0009-0009-0779-0133 ; 0000-0002-0644-7554 ; 0000-0002-9282-698X ; 0000-0002-2347-2743 ; 0000-0002-6466-1401 ; 0000-0002-2199-0379 ; 0000-0002-2921-8201 ; 0000-0003-2603-9694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38127734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koscher, Brent A</creatorcontrib><creatorcontrib>Canty, Richard B</creatorcontrib><creatorcontrib>McDonald, Matthew A</creatorcontrib><creatorcontrib>Greenman, Kevin P</creatorcontrib><creatorcontrib>McGill, Charles J</creatorcontrib><creatorcontrib>Bilodeau, Camille L</creatorcontrib><creatorcontrib>Jin, Wengong</creatorcontrib><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Vermeire, Florence H</creatorcontrib><creatorcontrib>Jin, Brooke</creatorcontrib><creatorcontrib>Hart, Travis</creatorcontrib><creatorcontrib>Kulesza, Timothy</creatorcontrib><creatorcontrib>Li, Shih-Cheng</creatorcontrib><creatorcontrib>Jaakkola, Tommi S</creatorcontrib><creatorcontrib>Barzilay, Regina</creatorcontrib><creatorcontrib>Gómez-Bombarelli, Rafael</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Jensen, Klavs F</creatorcontrib><title>Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Batch reactors</subject><subject>Case Studies</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Closed loops</subject><subject>Dyes</subject><subject>Errors</subject><subject>Experimentation</subject><subject>Exploitation</subject><subject>High performance liquid chromatography</subject><subject>Iterative methods</subject><subject>Learning algorithms</subject><subject>Light sources</subject><subject>Liquid chromatography</subject><subject>Literary Devices</subject><subject>Machine learning</subject><subject>Molecular properties</subject><subject>Octanol</subject><subject>Octanol-water partition coefficients</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Platforms</subject><subject>Prediction models</subject><subject>Reconfiguration</subject><subject>Robot arms</subject><subject>Robot learning</subject><subject>Robotics</subject><subject>Scaffolds</subject><subject>Stability</subject><subject>Workflow</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EouVjZkOWWBhIOX_FDRtCFJAqscAcOfZVSonjYieV-u8xojCwnId7_Oq9h5ALBjPGeHmbbIu9xZlxLZOgD8iUQaWKioM4JFMAURZz0GpCTlJaA-RdJY7JRMwZ11rIKanvxyH0wYcx3VA_dkO7iWGDcdgVLrZb7KkPHdqxM5G6Ntmwxbi7o4sYPN1EdK0d2tAnOgTq0aQxosd-SNT0jjbGfpyRo5XpEp7v31Pyvnh8e3gulq9PLw_3y8IKrobCOQ6slA1oiUK6uWEAmpe6mZdOStYIzTgDYcE2lRKKMbVSdiW5EKWrLLfilFz_5Ob6nyOmofa5LXad6THfVvMKlGKy1GVGr_6h6zDGPrf7pnJmnjpTtz-UjSGliKt6E1tv4q5mUH-7r_fu6737_ONynzs2Ht0f_ytbfAF6aoHi</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Koscher, Brent A</creator><creator>Canty, Richard B</creator><creator>McDonald, Matthew A</creator><creator>Greenman, Kevin P</creator><creator>McGill, Charles J</creator><creator>Bilodeau, Camille L</creator><creator>Jin, Wengong</creator><creator>Wu, Haoyang</creator><creator>Vermeire, Florence H</creator><creator>Jin, Brooke</creator><creator>Hart, Travis</creator><creator>Kulesza, Timothy</creator><creator>Li, Shih-Cheng</creator><creator>Jaakkola, Tommi S</creator><creator>Barzilay, Regina</creator><creator>Gómez-Bombarelli, Rafael</creator><creator>Green, William H</creator><creator>Jensen, Klavs F</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9495-8599</orcidid><orcidid>https://orcid.org/0000-0001-8233-0852</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid><orcidid>https://orcid.org/0000-0001-8645-0034</orcidid><orcidid>https://orcid.org/0000-0002-5607-8152</orcidid><orcidid>https://orcid.org/0000-0002-9444-3253</orcidid><orcidid>https://orcid.org/0000-0002-8358-5280</orcidid><orcidid>https://orcid.org/0009-0009-0779-0133</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><orcidid>https://orcid.org/0000-0002-9282-698X</orcidid><orcidid>https://orcid.org/0000-0002-2347-2743</orcidid><orcidid>https://orcid.org/0000-0002-6466-1401</orcidid><orcidid>https://orcid.org/0000-0002-2199-0379</orcidid><orcidid>https://orcid.org/0000-0002-2921-8201</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid></search><sort><creationdate>20231222</creationdate><title>Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back</title><author>Koscher, Brent A ; Canty, Richard B ; McDonald, Matthew A ; Greenman, Kevin P ; McGill, Charles J ; Bilodeau, Camille L ; Jin, Wengong ; Wu, Haoyang ; Vermeire, Florence H ; Jin, Brooke ; Hart, Travis ; Kulesza, Timothy ; Li, Shih-Cheng ; Jaakkola, Tommi S ; Barzilay, Regina ; Gómez-Bombarelli, Rafael ; Green, William H ; Jensen, Klavs F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Batch reactors</topic><topic>Case Studies</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Closed loops</topic><topic>Dyes</topic><topic>Errors</topic><topic>Experimentation</topic><topic>Exploitation</topic><topic>High performance liquid chromatography</topic><topic>Iterative methods</topic><topic>Learning algorithms</topic><topic>Light sources</topic><topic>Liquid chromatography</topic><topic>Literary Devices</topic><topic>Machine learning</topic><topic>Molecular properties</topic><topic>Octanol</topic><topic>Octanol-water partition coefficients</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Platforms</topic><topic>Prediction models</topic><topic>Reconfiguration</topic><topic>Robot arms</topic><topic>Robot learning</topic><topic>Robotics</topic><topic>Scaffolds</topic><topic>Stability</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koscher, Brent A</creatorcontrib><creatorcontrib>Canty, Richard B</creatorcontrib><creatorcontrib>McDonald, Matthew A</creatorcontrib><creatorcontrib>Greenman, Kevin P</creatorcontrib><creatorcontrib>McGill, Charles J</creatorcontrib><creatorcontrib>Bilodeau, Camille L</creatorcontrib><creatorcontrib>Jin, Wengong</creatorcontrib><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Vermeire, Florence H</creatorcontrib><creatorcontrib>Jin, Brooke</creatorcontrib><creatorcontrib>Hart, Travis</creatorcontrib><creatorcontrib>Kulesza, Timothy</creatorcontrib><creatorcontrib>Li, Shih-Cheng</creatorcontrib><creatorcontrib>Jaakkola, Tommi S</creatorcontrib><creatorcontrib>Barzilay, Regina</creatorcontrib><creatorcontrib>Gómez-Bombarelli, Rafael</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Jensen, Klavs F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koscher, Brent A</au><au>Canty, Richard B</au><au>McDonald, Matthew A</au><au>Greenman, Kevin P</au><au>McGill, Charles J</au><au>Bilodeau, Camille L</au><au>Jin, Wengong</au><au>Wu, Haoyang</au><au>Vermeire, Florence H</au><au>Jin, Brooke</au><au>Hart, Travis</au><au>Kulesza, Timothy</au><au>Li, Shih-Cheng</au><au>Jaakkola, Tommi S</au><au>Barzilay, Regina</au><au>Gómez-Bombarelli, Rafael</au><au>Green, William H</au><au>Jensen, Klavs F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2023-12-22</date><risdate>2023</risdate><volume>382</volume><issue>6677</issue><spage>eadi1407</spage><epage>eadi1407</epage><pages>eadi1407-eadi1407</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>38127734</pmid><doi>10.1126/science.adi1407</doi><orcidid>https://orcid.org/0000-0002-9495-8599</orcidid><orcidid>https://orcid.org/0000-0001-8233-0852</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid><orcidid>https://orcid.org/0000-0001-8645-0034</orcidid><orcidid>https://orcid.org/0000-0002-5607-8152</orcidid><orcidid>https://orcid.org/0000-0002-9444-3253</orcidid><orcidid>https://orcid.org/0000-0002-8358-5280</orcidid><orcidid>https://orcid.org/0009-0009-0779-0133</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><orcidid>https://orcid.org/0000-0002-9282-698X</orcidid><orcidid>https://orcid.org/0000-0002-2347-2743</orcidid><orcidid>https://orcid.org/0000-0002-6466-1401</orcidid><orcidid>https://orcid.org/0000-0002-2199-0379</orcidid><orcidid>https://orcid.org/0000-0002-2921-8201</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2023-12, Vol.382 (6677), p.eadi1407-eadi1407 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2905514676 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection |
subjects | Absorption Absorption spectra Algorithms Artificial Intelligence Automation Batch reactors Case Studies Chemical synthesis Chemistry Closed loops Dyes Errors Experimentation Exploitation High performance liquid chromatography Iterative methods Learning algorithms Light sources Liquid chromatography Literary Devices Machine learning Molecular properties Octanol Octanol-water partition coefficients Optimization Organic Chemistry Platforms Prediction models Reconfiguration Robot arms Robot learning Robotics Scaffolds Stability Workflow |
title | Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous,%20multiproperty-driven%20molecular%20discovery:%20From%20predictions%20to%20measurements%20and%20back&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Koscher,%20Brent%20A&rft.date=2023-12-22&rft.volume=382&rft.issue=6677&rft.spage=eadi1407&rft.epage=eadi1407&rft.pages=eadi1407-eadi1407&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adi1407&rft_dat=%3Cproquest_cross%3E2905514676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904232907&rft_id=info:pmid/38127734&rfr_iscdi=true |