Loading…

Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back

A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative s...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2023-12, Vol.382 (6677), p.eadi1407-eadi1407
Main Authors: Koscher, Brent A, Canty, Richard B, McDonald, Matthew A, Greenman, Kevin P, McGill, Charles J, Bilodeau, Camille L, Jin, Wengong, Wu, Haoyang, Vermeire, Florence H, Jin, Brooke, Hart, Travis, Kulesza, Timothy, Li, Shih-Cheng, Jaakkola, Tommi S, Barzilay, Regina, Gómez-Bombarelli, Rafael, Green, William H, Jensen, Klavs F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3
cites cdi_FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3
container_end_page eadi1407
container_issue 6677
container_start_page eadi1407
container_title Science (American Association for the Advancement of Science)
container_volume 382
creator Koscher, Brent A
Canty, Richard B
McDonald, Matthew A
Greenman, Kevin P
McGill, Charles J
Bilodeau, Camille L
Jin, Wengong
Wu, Haoyang
Vermeire, Florence H
Jin, Brooke
Hart, Travis
Kulesza, Timothy
Li, Shih-Cheng
Jaakkola, Tommi S
Barzilay, Regina
Gómez-Bombarelli, Rafael
Green, William H
Jensen, Klavs F
description A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.
doi_str_mv 10.1126/science.adi1407
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2905514676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2905514676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EouVjZkOWWBhIOX_FDRtCFJAqscAcOfZVSonjYieV-u8xojCwnId7_Oq9h5ALBjPGeHmbbIu9xZlxLZOgD8iUQaWKioM4JFMAURZz0GpCTlJaA-RdJY7JRMwZ11rIKanvxyH0wYcx3VA_dkO7iWGDcdgVLrZb7KkPHdqxM5G6Ntmwxbi7o4sYPN1EdK0d2tAnOgTq0aQxosd-SNT0jjbGfpyRo5XpEp7v31Pyvnh8e3gulq9PLw_3y8IKrobCOQ6slA1oiUK6uWEAmpe6mZdOStYIzTgDYcE2lRKKMbVSdiW5EKWrLLfilFz_5Ob6nyOmofa5LXad6THfVvMKlGKy1GVGr_6h6zDGPrf7pnJmnjpTtz-UjSGliKt6E1tv4q5mUH-7r_fu6737_ONynzs2Ht0f_ytbfAF6aoHi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904232907</pqid></control><display><type>article</type><title>Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Koscher, Brent A ; Canty, Richard B ; McDonald, Matthew A ; Greenman, Kevin P ; McGill, Charles J ; Bilodeau, Camille L ; Jin, Wengong ; Wu, Haoyang ; Vermeire, Florence H ; Jin, Brooke ; Hart, Travis ; Kulesza, Timothy ; Li, Shih-Cheng ; Jaakkola, Tommi S ; Barzilay, Regina ; Gómez-Bombarelli, Rafael ; Green, William H ; Jensen, Klavs F</creator><creatorcontrib>Koscher, Brent A ; Canty, Richard B ; McDonald, Matthew A ; Greenman, Kevin P ; McGill, Charles J ; Bilodeau, Camille L ; Jin, Wengong ; Wu, Haoyang ; Vermeire, Florence H ; Jin, Brooke ; Hart, Travis ; Kulesza, Timothy ; Li, Shih-Cheng ; Jaakkola, Tommi S ; Barzilay, Regina ; Gómez-Bombarelli, Rafael ; Green, William H ; Jensen, Klavs F</creatorcontrib><description>A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adi1407</identifier><identifier>PMID: 38127734</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Absorption ; Absorption spectra ; Algorithms ; Artificial Intelligence ; Automation ; Batch reactors ; Case Studies ; Chemical synthesis ; Chemistry ; Closed loops ; Dyes ; Errors ; Experimentation ; Exploitation ; High performance liquid chromatography ; Iterative methods ; Learning algorithms ; Light sources ; Liquid chromatography ; Literary Devices ; Machine learning ; Molecular properties ; Octanol ; Octanol-water partition coefficients ; Optimization ; Organic Chemistry ; Platforms ; Prediction models ; Reconfiguration ; Robot arms ; Robot learning ; Robotics ; Scaffolds ; Stability ; Workflow</subject><ispartof>Science (American Association for the Advancement of Science), 2023-12, Vol.382 (6677), p.eadi1407-eadi1407</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3</citedby><cites>FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3</cites><orcidid>0000-0002-9495-8599 ; 0000-0001-8233-0852 ; 0000-0001-7192-580X ; 0000-0001-8645-0034 ; 0000-0002-5607-8152 ; 0000-0002-9444-3253 ; 0000-0002-8358-5280 ; 0009-0009-0779-0133 ; 0000-0002-0644-7554 ; 0000-0002-9282-698X ; 0000-0002-2347-2743 ; 0000-0002-6466-1401 ; 0000-0002-2199-0379 ; 0000-0002-2921-8201 ; 0000-0003-2603-9694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38127734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koscher, Brent A</creatorcontrib><creatorcontrib>Canty, Richard B</creatorcontrib><creatorcontrib>McDonald, Matthew A</creatorcontrib><creatorcontrib>Greenman, Kevin P</creatorcontrib><creatorcontrib>McGill, Charles J</creatorcontrib><creatorcontrib>Bilodeau, Camille L</creatorcontrib><creatorcontrib>Jin, Wengong</creatorcontrib><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Vermeire, Florence H</creatorcontrib><creatorcontrib>Jin, Brooke</creatorcontrib><creatorcontrib>Hart, Travis</creatorcontrib><creatorcontrib>Kulesza, Timothy</creatorcontrib><creatorcontrib>Li, Shih-Cheng</creatorcontrib><creatorcontrib>Jaakkola, Tommi S</creatorcontrib><creatorcontrib>Barzilay, Regina</creatorcontrib><creatorcontrib>Gómez-Bombarelli, Rafael</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Jensen, Klavs F</creatorcontrib><title>Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Batch reactors</subject><subject>Case Studies</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Closed loops</subject><subject>Dyes</subject><subject>Errors</subject><subject>Experimentation</subject><subject>Exploitation</subject><subject>High performance liquid chromatography</subject><subject>Iterative methods</subject><subject>Learning algorithms</subject><subject>Light sources</subject><subject>Liquid chromatography</subject><subject>Literary Devices</subject><subject>Machine learning</subject><subject>Molecular properties</subject><subject>Octanol</subject><subject>Octanol-water partition coefficients</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Platforms</subject><subject>Prediction models</subject><subject>Reconfiguration</subject><subject>Robot arms</subject><subject>Robot learning</subject><subject>Robotics</subject><subject>Scaffolds</subject><subject>Stability</subject><subject>Workflow</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EouVjZkOWWBhIOX_FDRtCFJAqscAcOfZVSonjYieV-u8xojCwnId7_Oq9h5ALBjPGeHmbbIu9xZlxLZOgD8iUQaWKioM4JFMAURZz0GpCTlJaA-RdJY7JRMwZ11rIKanvxyH0wYcx3VA_dkO7iWGDcdgVLrZb7KkPHdqxM5G6Ntmwxbi7o4sYPN1EdK0d2tAnOgTq0aQxosd-SNT0jjbGfpyRo5XpEp7v31Pyvnh8e3gulq9PLw_3y8IKrobCOQ6slA1oiUK6uWEAmpe6mZdOStYIzTgDYcE2lRKKMbVSdiW5EKWrLLfilFz_5Ob6nyOmofa5LXad6THfVvMKlGKy1GVGr_6h6zDGPrf7pnJmnjpTtz-UjSGliKt6E1tv4q5mUH-7r_fu6737_ONynzs2Ht0f_ytbfAF6aoHi</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Koscher, Brent A</creator><creator>Canty, Richard B</creator><creator>McDonald, Matthew A</creator><creator>Greenman, Kevin P</creator><creator>McGill, Charles J</creator><creator>Bilodeau, Camille L</creator><creator>Jin, Wengong</creator><creator>Wu, Haoyang</creator><creator>Vermeire, Florence H</creator><creator>Jin, Brooke</creator><creator>Hart, Travis</creator><creator>Kulesza, Timothy</creator><creator>Li, Shih-Cheng</creator><creator>Jaakkola, Tommi S</creator><creator>Barzilay, Regina</creator><creator>Gómez-Bombarelli, Rafael</creator><creator>Green, William H</creator><creator>Jensen, Klavs F</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9495-8599</orcidid><orcidid>https://orcid.org/0000-0001-8233-0852</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid><orcidid>https://orcid.org/0000-0001-8645-0034</orcidid><orcidid>https://orcid.org/0000-0002-5607-8152</orcidid><orcidid>https://orcid.org/0000-0002-9444-3253</orcidid><orcidid>https://orcid.org/0000-0002-8358-5280</orcidid><orcidid>https://orcid.org/0009-0009-0779-0133</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><orcidid>https://orcid.org/0000-0002-9282-698X</orcidid><orcidid>https://orcid.org/0000-0002-2347-2743</orcidid><orcidid>https://orcid.org/0000-0002-6466-1401</orcidid><orcidid>https://orcid.org/0000-0002-2199-0379</orcidid><orcidid>https://orcid.org/0000-0002-2921-8201</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid></search><sort><creationdate>20231222</creationdate><title>Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back</title><author>Koscher, Brent A ; Canty, Richard B ; McDonald, Matthew A ; Greenman, Kevin P ; McGill, Charles J ; Bilodeau, Camille L ; Jin, Wengong ; Wu, Haoyang ; Vermeire, Florence H ; Jin, Brooke ; Hart, Travis ; Kulesza, Timothy ; Li, Shih-Cheng ; Jaakkola, Tommi S ; Barzilay, Regina ; Gómez-Bombarelli, Rafael ; Green, William H ; Jensen, Klavs F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Batch reactors</topic><topic>Case Studies</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Closed loops</topic><topic>Dyes</topic><topic>Errors</topic><topic>Experimentation</topic><topic>Exploitation</topic><topic>High performance liquid chromatography</topic><topic>Iterative methods</topic><topic>Learning algorithms</topic><topic>Light sources</topic><topic>Liquid chromatography</topic><topic>Literary Devices</topic><topic>Machine learning</topic><topic>Molecular properties</topic><topic>Octanol</topic><topic>Octanol-water partition coefficients</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Platforms</topic><topic>Prediction models</topic><topic>Reconfiguration</topic><topic>Robot arms</topic><topic>Robot learning</topic><topic>Robotics</topic><topic>Scaffolds</topic><topic>Stability</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koscher, Brent A</creatorcontrib><creatorcontrib>Canty, Richard B</creatorcontrib><creatorcontrib>McDonald, Matthew A</creatorcontrib><creatorcontrib>Greenman, Kevin P</creatorcontrib><creatorcontrib>McGill, Charles J</creatorcontrib><creatorcontrib>Bilodeau, Camille L</creatorcontrib><creatorcontrib>Jin, Wengong</creatorcontrib><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Vermeire, Florence H</creatorcontrib><creatorcontrib>Jin, Brooke</creatorcontrib><creatorcontrib>Hart, Travis</creatorcontrib><creatorcontrib>Kulesza, Timothy</creatorcontrib><creatorcontrib>Li, Shih-Cheng</creatorcontrib><creatorcontrib>Jaakkola, Tommi S</creatorcontrib><creatorcontrib>Barzilay, Regina</creatorcontrib><creatorcontrib>Gómez-Bombarelli, Rafael</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Jensen, Klavs F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koscher, Brent A</au><au>Canty, Richard B</au><au>McDonald, Matthew A</au><au>Greenman, Kevin P</au><au>McGill, Charles J</au><au>Bilodeau, Camille L</au><au>Jin, Wengong</au><au>Wu, Haoyang</au><au>Vermeire, Florence H</au><au>Jin, Brooke</au><au>Hart, Travis</au><au>Kulesza, Timothy</au><au>Li, Shih-Cheng</au><au>Jaakkola, Tommi S</au><au>Barzilay, Regina</au><au>Gómez-Bombarelli, Rafael</au><au>Green, William H</au><au>Jensen, Klavs F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2023-12-22</date><risdate>2023</risdate><volume>382</volume><issue>6677</issue><spage>eadi1407</spage><epage>eadi1407</epage><pages>eadi1407-eadi1407</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>38127734</pmid><doi>10.1126/science.adi1407</doi><orcidid>https://orcid.org/0000-0002-9495-8599</orcidid><orcidid>https://orcid.org/0000-0001-8233-0852</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid><orcidid>https://orcid.org/0000-0001-8645-0034</orcidid><orcidid>https://orcid.org/0000-0002-5607-8152</orcidid><orcidid>https://orcid.org/0000-0002-9444-3253</orcidid><orcidid>https://orcid.org/0000-0002-8358-5280</orcidid><orcidid>https://orcid.org/0009-0009-0779-0133</orcidid><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><orcidid>https://orcid.org/0000-0002-9282-698X</orcidid><orcidid>https://orcid.org/0000-0002-2347-2743</orcidid><orcidid>https://orcid.org/0000-0002-6466-1401</orcidid><orcidid>https://orcid.org/0000-0002-2199-0379</orcidid><orcidid>https://orcid.org/0000-0002-2921-8201</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2023-12, Vol.382 (6677), p.eadi1407-eadi1407
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2905514676
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Absorption
Absorption spectra
Algorithms
Artificial Intelligence
Automation
Batch reactors
Case Studies
Chemical synthesis
Chemistry
Closed loops
Dyes
Errors
Experimentation
Exploitation
High performance liquid chromatography
Iterative methods
Learning algorithms
Light sources
Liquid chromatography
Literary Devices
Machine learning
Molecular properties
Octanol
Octanol-water partition coefficients
Optimization
Organic Chemistry
Platforms
Prediction models
Reconfiguration
Robot arms
Robot learning
Robotics
Scaffolds
Stability
Workflow
title Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous,%20multiproperty-driven%20molecular%20discovery:%20From%20predictions%20to%20measurements%20and%20back&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Koscher,%20Brent%20A&rft.date=2023-12-22&rft.volume=382&rft.issue=6677&rft.spage=eadi1407&rft.epage=eadi1407&rft.pages=eadi1407-eadi1407&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adi1407&rft_dat=%3Cproquest_cross%3E2905514676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-dd20164b074e34d8a1007267b86d441b3712103c0cb9535115f5cf42336d9c2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904232907&rft_id=info:pmid/38127734&rfr_iscdi=true