Loading…
Ammonia storage and slip under steady and transient state in close-coupled SCR
The close-coupled selective catalytic reduction (cc-SCR) catalyst is an effective technology to reduce tailpipe NOx emission during cold start. This paper investigated the optimal ammonia storage under steady and transient state in the cc-SCR. The study showed that a trade-off between NOx conversion...
Saved in:
Published in: | Journal of environmental sciences (China) 2024-04, Vol.138, p.470-481 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The close-coupled selective catalytic reduction (cc-SCR) catalyst is an effective technology to reduce tailpipe NOx emission during cold start. This paper investigated the optimal ammonia storage under steady and transient state in the cc-SCR. The study showed that a trade-off between NOx conversion efficiency and ammonia slip is observed on the pareto solutions under steady state, and the optimal ammonia storage is calculated with ammonia slip less than 10 μL/L based on the China Ⅵ emission legislation. The rapid temperature increase will lead to severe ammonia slip in the transient test cycle. A simplified 0-D calculation method on ammonia slip under transient state is proposed based on kinetic model of ammonia adsorption and desorption. In addition, the effect of ammonia storage, catalyst temperature and temperature increasing rate on ammonia slip are analyzed. The optimal ammonia storage is calculated with maximum ammonia slip less than 100 μL/L according to the oxidation efficiency of ammonia slip catalyst (ASC) downstream cc-SCR. It was found that the optimal ammonia storage under transient state is much lower than that under steady state in cc-SCR at lower temperature, and a phase diagram is established to analyze the influence of temperature and temperature increasing rate on optimal ammonia storage. |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/j.jes.2023.02.029 |