Loading…
Solid-State Dewetting of Thin Au Films for Surface Functionalization of Biomedical Implants
Biomaterial-centered infections of orthopedic implants remain a significant burden in the healthcare system due to sedentary lifestyles and an aging population. One approach to combat infections and improve implant osteointegration is functionalizing the implant surface with anti-infective and osteo...
Saved in:
Published in: | Materials 2023-12, Vol.16 (24), p.7524 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biomaterial-centered infections of orthopedic implants remain a significant burden in the healthcare system due to sedentary lifestyles and an aging population. One approach to combat infections and improve implant osteointegration is functionalizing the implant surface with anti-infective and osteoinductive agents. In this framework, Au nanoparticles are produced on the surface of Ti-6Al-4V medical alloy by solid-state dewetting of 5 nm Au film and used as the substrate for the conjugation of a model antibiotic vancomycin via a mono-thiolated poly(ethylene glycol) linker. Produced Au nanoparticles on Ti-6Al-4V surface are equiaxed with a mean diameter 19.8 ± 7.2 nm, which is shown by high-resolution scanning electron microscopy and atomic force microscopy. The conjugation of the antibiotic vancomycin, 18.8 ± 1.3 nm-thick film, is confirmed by high resolution-scanning transmission electron microscopy and X-ray photoelectron spectroscopy. Overall, showing a link between the solid-state dewetting process and surface functionalization, we demonstrate a novel, simple, and versatile method for functionalization of implant surfaces. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16247524 |