Loading…

Fertilization intensities at the buffer zones of ponds regulate nitrogen and phosphorus pollution in an agricultural watershed

The sudden increase in water nutrients caused by environmental factors have always been a focus of attention for ecologists. Fertilizer inputs with spatio-temporal characteristics are the main contributors to water pollution in agricultural watersheds. However, there are few studies on the threshold...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) 2024-02, Vol.250, p.121033-121033, Article 121033
Main Authors: Xiao, Hengbin, Jiang, Mengdie, Su, Ronglin, Luo, Yue, Jiang, Yanbin, Hu, Ronggui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sudden increase in water nutrients caused by environmental factors have always been a focus of attention for ecologists. Fertilizer inputs with spatio-temporal characteristics are the main contributors to water pollution in agricultural watersheds. However, there are few studies on the thresholds of nitrogen (N) and phosphorus (P) fertilization rates that affect the abrupt deterioration of water quality. This study aims to investigate 28 ponds in Central China in 2019 to reveal the relationships of basal and topdressing fertilization intensities in surrounding agricultural land with pond water N and P concentrations, including total N (TN), nitrate (NO -N), ammonium (NH -N), total P (TP), and dissolved P (DP). Abrupt change analysis was used to determine the thresholds of fertilization intensities causing sharp increases in the pond water N and P concentrations. Generally, the observed pond water N and P concentrations during the high-runoff period were higher than those during the low-runoff period. The TN, NO -N, TP, DP concentrations showed stronger positive correlations with topdressing intensities, while the NH -N concentrations exhibited a higher positive correlation with basal intensities. On the other hand, the NO -N concentrations had a significant positive correlation with the topdressing N, basal N, and catchment slope interactions. Significant negative correlations were observed between all water quality parameters and pond area. Spatial scale analysis indicated that fertilization practices at the 50 m and 100 m buffer zone scales exhibited greater independent effects on the variations in the N and P concentrations than those at the catchment scale. The thresholds analysis results of fertilization intensities indicated that pond water N concentrations increased sharply when topdressing and basal N intensities exceeded 163 and 115 kg/ha at the 100 and 50 m buffer zone scales, respectively. Similarly, pond water P concentrations rose significantly when topdressing and basal P intensities exceeded 117 and 78 kg/ha at the 50 m buffer zone scale, respectively. These findings suggest that fertilization management should incorporate thresholds and spatio-temporal scales to effectively mitigate pond water pollution.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2023.121033