Loading…
Action mechanism of the potential biocontrol agent Brevibacillus laterosporus SN19-1 against Xanthomonas oryzae pv. oryzae causing rice bacterial leaf blight
The causal agent of rice bacterial leaf blight (BLB) is Xanthomonas oryzae pv. oryzae ( Xoo ), which causes serious damage to rice, leading to yield reduction or even crop failure. Brevibacillus laterosporus SN19-1 is a biocontrol strain obtained by long-term screening in our laboratory, which has a...
Saved in:
Published in: | Archives of microbiology 2024-01, Vol.206 (1), p.40-40, Article 40 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The causal agent of rice bacterial leaf blight (BLB) is
Xanthomonas oryzae
pv.
oryzae
(
Xoo
), which causes serious damage to rice, leading to yield reduction or even crop failure.
Brevibacillus laterosporus
SN19-1 is a biocontrol strain obtained by long-term screening in our laboratory, which has a good antagonistic effect on a variety of plant pathogenic bacteria. In this study, we investigated the efficacy and bacterial inhibition of
B. laterosporus
SN19-1 against BLB to lay the theoretical foundation and research technology for the development of SN19-1 as a biopesticide of BLB. It was found that SN19-1 has the ability to fix nitrogen, detoxify organic phosphorus, and produce cellulase, protease, and siderophores, as well as IAA. In a greenhouse pot experiment, the control efficiency of SN19-1 against BLB was as high as 90.92%. Further investigation of the inhibitory mechanism of SN19-1 on
Xoo
found that the biofilm formation ability of
Xoo
was inhibited and the pathogenicity was weakened after the action of SN19-1 sterile supernatant on
Xoo
. The activities of enzymes related to respiration and the energy metabolism of
Xoo
were significantly inhibited, while the level of intracellular reactive oxygen species was greatly increased. Scanning electron microscopy observations showed folds on the surface of
Xoo
. A significant increase in cell membrane permeability and outer membrane permeability and a decrease in cell membrane fluidity resulted in the extravasation of intracellular substances and cell death. The results of this study highlight the role of
B. laterosporus
SN19-1 against the pathogen of BLB and help elucidate the underlying molecular mechanisms. |
---|---|
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/s00203-023-03754-y |