Loading…

One‐pot Construction of Metal Nanoparticles Loaded COF Catalysts for Aqueous Hydrogenation Reactions

The catalysis performance of metal nanoparticles (NPs) will be significantly deteriorated because of their spontaneous agglomeration during practical applications. Covalent‐organic frameworks (COFs) materials with functional groups and well‐defined channels benefit for the dispersion and anchor of m...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2024-02, Vol.30 (11), p.e202303505-n/a
Main Authors: Lin, Xiaogeng, Ma, Xingyu, He, Yasan, Li, Shijun, Chen, Wangzhi, Li, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The catalysis performance of metal nanoparticles (NPs) will be significantly deteriorated because of their spontaneous agglomeration during practical applications. Covalent‐organic frameworks (COFs) materials with functional groups and well‐defined channels benefit for the dispersion and anchor of metal ions and the confined growth of metal NPs, working as an ideal platform to compose catalytic systems. In this article, we report a one‐pot strategy for the preparation of metal NPs loaded COFs without the need of post‐modification. During the polymerization process, the pre‐added metal ions were stabilized by the rapidly formed COF oligomers and hardly disturb the construction of COFs. After reduction, metal NPs are uniformly anchored on the COF matrix. Eventually, a wide spectrum of metal NPs, including Au, Pd, Pt, AuPd, CuPd, CuPt and CuPdPt, loaded COFs are successfully prepared. The versatility and metal ions anchoring mechanism are verified with four different COF matrixes. Taking AuPd NPs as example, the resultant AuPd NPs loaded COF materials can selectively decompose ammonium formate and produce hydrogen in‐situ, exhibiting over 99 % conversion of hydrodechlorination for chlorobenzenes and nitro‐reduction reaction for nitroaromatic compounds under ambient temperature in aqueous solution. A new family of metal nanoparticles loaded COFs catalysts have been prepared via one‐pot construction strategy without lab‐cost procedures, demonstrating excellent hydrogenation performance under mild conditions. The new strategy can be further evolved as into a versatile platform to create new COFs materials and explore the resultant applications.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.202303505