Loading…

The effect of iron on montmorillonite stability. (II) Experimental investigation

Several designs proposed for high-level nuclear waste (HLW) repositories include steel waste canisters surrounded by montmorillonite clay. This work investigates montmorillonite stability in the presence of native Fe, magnetite and aqueous solutions under hydrothermal conditions. Two series of exper...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta 2006-01, Vol.70 (2), p.323-336
Main Authors: Wilson, James, Cressey, Gordon, Cressey, Barbara, Cuadros, Javier, Ragnarsdottir, K. Vala, Savage, David, Shibata, Masahiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several designs proposed for high-level nuclear waste (HLW) repositories include steel waste canisters surrounded by montmorillonite clay. This work investigates montmorillonite stability in the presence of native Fe, magnetite and aqueous solutions under hydrothermal conditions. Two series of experiments were conducted. In the first, mixtures of Na-montmorillonite, magnetite, native Fe, calcite, and NaCl solutions were reacted at 250 °C, P sat for between 93 and 114 days. In the second series, the starting mixtures included Na-montmorillonite, native Fe and solutions of FeCl 2 which were reacted at temperatures of 80, 150, and 250 °C, P sat, for 90–92 days. Experiments were analysed using XRD, FT-IR, TEM, ICP-AES, and ICP-MS. In the first series of experiments, native Fe oxidised to produce magnetite and the starting montmorillonite material was transformed to Fe-rich smectite only when the Fe was added predominantly as Fe metal rather than Fe oxide (magnetite). The Fe-rich smectite was initially Fe(II)-rich, which oxidised to produce an Fe(III)-rich form on exposure to air. The expansion of this material on ethylene glycol solvation was much reduced compared to the montmorillonite starting material. TEM imaging shows that partial loss of tetrahedral sheets occurred during transformation of the montmorillonite, resulting in adjacent layers becoming H-bonded with a 7 Å repeat. The reduced swelling property of the Fe-smectite product may be due predominantly to the structural disruption of smectite layers and the formation of H-bonds. Solute activities corresponded to the approximate stability field calculated for hypothetical Fe(II)-saponite. In the second series of experiments, significant smectite alteration was only observed at 250 °C and the product contained a small proportion of a 7 Å repeat structure, observable by XRD. In these experiments, solute activities coincide with berthierine. The experiments indicate that although bentonite is still a desirable choice of backfill material for HLW repositories, some loss of expandability may result if montmorillonite is altered to Fe-rich smectite at the interface between steel canisters and bentonite.
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2005.09.023