Loading…
Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren
Two quantitative schlieren methods are assessed and compared: calibrated color schlieren (CCS) and background oriented schlieren (BOS). Both methods are capable of measuring the light deflection angle in two spatial directions, and hence the projected density gradient vector field. Spatial integrati...
Saved in:
Published in: | Experiments in fluids 2004-02, Vol.36 (2), p.309-325 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two quantitative schlieren methods are assessed and compared: calibrated color schlieren (CCS) and background oriented schlieren (BOS). Both methods are capable of measuring the light deflection angle in two spatial directions, and hence the projected density gradient vector field. Spatial integration using the conjugate gradient method returns the projected density field. To assess the performance of CCS and BOS, density measurements of a two-dimensional benchmark flow (a Prandtl-Meyer expansion fan) are compared with the theoretical density field and with the density inferred from PIV velocity measurements. The methodas performance is also evaluated a priori from an experiment ray-tracing simulation. The density measurements show good agreement with theory. Moreover, CCS and BOS return comparable results with respect to each other and with respect to the PIV measurements. BOS proves to be very sensitive to displacements of the wind tunnel during the experiment and requires a correction for it, making it necessary to apply extra boundary conditions in the integration procedure. Furthermore, spatial resolution can be a limiting factor for accurate measurements using BOS. CCS suffers from relatively high noise in the density gradient measurement due to camera noise and has a smaller dynamic range when compared to BOS. Finally the application of the two schlieren methods to a separated wake flow is demonstrated. Flow features such as shear layers and expansion and recompression waves are measured with both methods. |
---|---|
ISSN: | 0723-4864 1432-1114 |
DOI: | 10.1007/s00348-003-0724-8 |