Loading…
Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control
We study the problem of tracking control and maneuver regulation control for a nonlinear nonminimum phase control system. First, a tracking controller, consisting of feedforward and static-state feedback, is designed to guarantee uniform asymptotic trajectory tracking. The feedforward is determined...
Saved in:
Published in: | IEEE transactions on control systems technology 2002-11, Vol.10 (6), p.780-792 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the problem of tracking control and maneuver regulation control for a nonlinear nonminimum phase control system. First, a tracking controller, consisting of feedforward and static-state feedback, is designed to guarantee uniform asymptotic trajectory tracking. The feedforward is determined by solving a stable noncausal inversion problem. Constant feedback gains are determined based on linear quadratic regulator (LQR) optimization and assumed satisfaction of a robustness inequality. A maneuver regulation controller is obtained from the tracking controller by introducing a suitable state projection that is related to the LQR feedback gains. Properties of the closed loop, including local asymptotic convergence of the transverse errors are described. A multivariable flight control problem is used to demonstrate the approach. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2002.804120 |