Loading…

Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 1. Methodology

We present a novel technique designed to calculate the detailed differential number flux signature (as a function of energy and time) of precipitating radiation‐belt electrons, driven by a magnetospherically reflecting (MR) whistler wave, initiated by a single cloud‐to‐ground lightning discharge. Ou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research. B. Solid Earth 2006-02, Vol.111 (A2), p.n/a
Main Authors: Bortnik, J., Inan, U. S., Bell, T. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5448-49cf32d24d61112e406cd5ed24eb20aea6991cf5eae9d9ed03199429a8121cdb3
cites cdi_FETCH-LOGICAL-c5448-49cf32d24d61112e406cd5ed24eb20aea6991cf5eae9d9ed03199429a8121cdb3
container_end_page n/a
container_issue A2
container_start_page
container_title Journal of Geophysical Research. B. Solid Earth
container_volume 111
creator Bortnik, J.
Inan, U. S.
Bell, T. F.
description We present a novel technique designed to calculate the detailed differential number flux signature (as a function of energy and time) of precipitating radiation‐belt electrons, driven by a magnetospherically reflecting (MR) whistler wave, initiated by a single cloud‐to‐ground lightning discharge. Our model consists of several stages. First, we calculate the MR whistler wave characteristics at 1° latitude intervals along a given field‐line. This is accomplished using an extensive ray tracing and interpolation algorithm involving ∼120 million rays, and accounting for the effects of Landau damping, spatial, and temporal dispersion. We then use these wave characteristics to compute the pitch angle changes of resonant electrons by assuming that the interactions are linear, and independent between adjacent latitude and wave frequency bins. The pitch angle changes are transformed to precipitating flux using a novel convolution method and displayed as a function of particle energy and time at the feet of a given field line. We have calculated and compared the differential number flux signatures at the northern and southern feet of the L = 2.3 and L = 3 field lines, and found that precipitation onset and duration times increase with latitude (consistent with previous work). The precipitation consists of suprathermal Landau resonance electrons (E ≲ 10 keV) which are intense but contribute little to the total energy flux, a flux gap (10 keV ≲ E ≲ 80 keV) corresponding to a change in coupling mechanism from Landau resonance to gyroresonance, and a series of precipitation swaths (E ≳ 80 keV) corresponding to gyroresonance interactions. The swaths result in periodic maxima in the precipitated energy flux, which correspond to the equatorial traversals of the underlying MR whistler wave energy. Global precipitation signatures were computed for a number of lightning discharge latitudes and are presented in a companion paper (Bortnik et al., 2006).
doi_str_mv 10.1029/2005JA011182
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29076076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29076076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5448-49cf32d24d61112e406cd5ed24eb20aea6991cf5eae9d9ed03199429a8121cdb3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEEqvSGz_AFziRMnYcJ-a2qmChtCCtiqi4WF57kjV4k2B7WfbAf8dVKuBErZGsmfnek61XFE8pnFFg8iUDqC-WQClt2YNiwWgtSsaAPSwWQHlbAmPN4-I0xq-QD68FB7oofl3jbhqD9iS6ftBpHzCSsSNBW6eTGweyQZ8IejQp5G4KaNzk0rxzg90btGRzJN712zS4oS97HDDolMdXa3LYupg8BnLQPzC-IvSMXGHajnb0Y398UjzqtI94enefFJ_evL4-f1tefly9O19elqbm-elcmq5ilnEr8vcYchDG1pgHuGGgUQspqelq1CitRAsVlZIzqVvKqLGb6qR4PvtOYfy-x5jUzkWD3usBx31UTEIjct0PtpSCEPR-EDiwBmQGX8ygCWOMATs1BbfT4agoqNvg1L_BZfzZna-ORvsu6MG4-FfTCF6DuOWqmTs4j8f_eqqL1XpJGynbrCpnVQ4Ff_5R6fBNiaZqavX5w0q9_yJvANY3qql-A5S5tqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20402709</pqid></control><display><type>article</type><title>Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 1. Methodology</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Bortnik, J. ; Inan, U. S. ; Bell, T. F.</creator><creatorcontrib>Bortnik, J. ; Inan, U. S. ; Bell, T. F.</creatorcontrib><description>We present a novel technique designed to calculate the detailed differential number flux signature (as a function of energy and time) of precipitating radiation‐belt electrons, driven by a magnetospherically reflecting (MR) whistler wave, initiated by a single cloud‐to‐ground lightning discharge. Our model consists of several stages. First, we calculate the MR whistler wave characteristics at 1° latitude intervals along a given field‐line. This is accomplished using an extensive ray tracing and interpolation algorithm involving ∼120 million rays, and accounting for the effects of Landau damping, spatial, and temporal dispersion. We then use these wave characteristics to compute the pitch angle changes of resonant electrons by assuming that the interactions are linear, and independent between adjacent latitude and wave frequency bins. The pitch angle changes are transformed to precipitating flux using a novel convolution method and displayed as a function of particle energy and time at the feet of a given field line. We have calculated and compared the differential number flux signatures at the northern and southern feet of the L = 2.3 and L = 3 field lines, and found that precipitation onset and duration times increase with latitude (consistent with previous work). The precipitation consists of suprathermal Landau resonance electrons (E ≲ 10 keV) which are intense but contribute little to the total energy flux, a flux gap (10 keV ≲ E ≲ 80 keV) corresponding to a change in coupling mechanism from Landau resonance to gyroresonance, and a series of precipitation swaths (E ≳ 80 keV) corresponding to gyroresonance interactions. The swaths result in periodic maxima in the precipitated energy flux, which correspond to the equatorial traversals of the underlying MR whistler wave energy. Global precipitation signatures were computed for a number of lightning discharge latitudes and are presented in a companion paper (Bortnik et al., 2006).</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2005JA011182</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; lightning ; MR whistlers ; precipitation</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2006-02, Vol.111 (A2), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5448-49cf32d24d61112e406cd5ed24eb20aea6991cf5eae9d9ed03199429a8121cdb3</citedby><cites>FETCH-LOGICAL-c5448-49cf32d24d61112e406cd5ed24eb20aea6991cf5eae9d9ed03199429a8121cdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JA011182$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JA011182$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17645062$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bortnik, J.</creatorcontrib><creatorcontrib>Inan, U. S.</creatorcontrib><creatorcontrib>Bell, T. F.</creatorcontrib><title>Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 1. Methodology</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>We present a novel technique designed to calculate the detailed differential number flux signature (as a function of energy and time) of precipitating radiation‐belt electrons, driven by a magnetospherically reflecting (MR) whistler wave, initiated by a single cloud‐to‐ground lightning discharge. Our model consists of several stages. First, we calculate the MR whistler wave characteristics at 1° latitude intervals along a given field‐line. This is accomplished using an extensive ray tracing and interpolation algorithm involving ∼120 million rays, and accounting for the effects of Landau damping, spatial, and temporal dispersion. We then use these wave characteristics to compute the pitch angle changes of resonant electrons by assuming that the interactions are linear, and independent between adjacent latitude and wave frequency bins. The pitch angle changes are transformed to precipitating flux using a novel convolution method and displayed as a function of particle energy and time at the feet of a given field line. We have calculated and compared the differential number flux signatures at the northern and southern feet of the L = 2.3 and L = 3 field lines, and found that precipitation onset and duration times increase with latitude (consistent with previous work). The precipitation consists of suprathermal Landau resonance electrons (E ≲ 10 keV) which are intense but contribute little to the total energy flux, a flux gap (10 keV ≲ E ≲ 80 keV) corresponding to a change in coupling mechanism from Landau resonance to gyroresonance, and a series of precipitation swaths (E ≳ 80 keV) corresponding to gyroresonance interactions. The swaths result in periodic maxima in the precipitated energy flux, which correspond to the equatorial traversals of the underlying MR whistler wave energy. Global precipitation signatures were computed for a number of lightning discharge latitudes and are presented in a companion paper (Bortnik et al., 2006).</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>lightning</subject><subject>MR whistlers</subject><subject>precipitation</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhSMEEqvSGz_AFziRMnYcJ-a2qmChtCCtiqi4WF57kjV4k2B7WfbAf8dVKuBErZGsmfnek61XFE8pnFFg8iUDqC-WQClt2YNiwWgtSsaAPSwWQHlbAmPN4-I0xq-QD68FB7oofl3jbhqD9iS6ftBpHzCSsSNBW6eTGweyQZ8IejQp5G4KaNzk0rxzg90btGRzJN712zS4oS97HDDolMdXa3LYupg8BnLQPzC-IvSMXGHajnb0Y398UjzqtI94enefFJ_evL4-f1tefly9O19elqbm-elcmq5ilnEr8vcYchDG1pgHuGGgUQspqelq1CitRAsVlZIzqVvKqLGb6qR4PvtOYfy-x5jUzkWD3usBx31UTEIjct0PtpSCEPR-EDiwBmQGX8ygCWOMATs1BbfT4agoqNvg1L_BZfzZna-ORvsu6MG4-FfTCF6DuOWqmTs4j8f_eqqL1XpJGynbrCpnVQ4Ff_5R6fBNiaZqavX5w0q9_yJvANY3qql-A5S5tqo</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Bortnik, J.</creator><creator>Inan, U. S.</creator><creator>Bell, T. F.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200602</creationdate><title>Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 1. Methodology</title><author>Bortnik, J. ; Inan, U. S. ; Bell, T. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5448-49cf32d24d61112e406cd5ed24eb20aea6991cf5eae9d9ed03199429a8121cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>lightning</topic><topic>MR whistlers</topic><topic>precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bortnik, J.</creatorcontrib><creatorcontrib>Inan, U. S.</creatorcontrib><creatorcontrib>Bell, T. F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bortnik, J.</au><au>Inan, U. S.</au><au>Bell, T. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 1. Methodology</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2006-02</date><risdate>2006</risdate><volume>111</volume><issue>A2</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We present a novel technique designed to calculate the detailed differential number flux signature (as a function of energy and time) of precipitating radiation‐belt electrons, driven by a magnetospherically reflecting (MR) whistler wave, initiated by a single cloud‐to‐ground lightning discharge. Our model consists of several stages. First, we calculate the MR whistler wave characteristics at 1° latitude intervals along a given field‐line. This is accomplished using an extensive ray tracing and interpolation algorithm involving ∼120 million rays, and accounting for the effects of Landau damping, spatial, and temporal dispersion. We then use these wave characteristics to compute the pitch angle changes of resonant electrons by assuming that the interactions are linear, and independent between adjacent latitude and wave frequency bins. The pitch angle changes are transformed to precipitating flux using a novel convolution method and displayed as a function of particle energy and time at the feet of a given field line. We have calculated and compared the differential number flux signatures at the northern and southern feet of the L = 2.3 and L = 3 field lines, and found that precipitation onset and duration times increase with latitude (consistent with previous work). The precipitation consists of suprathermal Landau resonance electrons (E ≲ 10 keV) which are intense but contribute little to the total energy flux, a flux gap (10 keV ≲ E ≲ 80 keV) corresponding to a change in coupling mechanism from Landau resonance to gyroresonance, and a series of precipitation swaths (E ≳ 80 keV) corresponding to gyroresonance interactions. The swaths result in periodic maxima in the precipitated energy flux, which correspond to the equatorial traversals of the underlying MR whistler wave energy. Global precipitation signatures were computed for a number of lightning discharge latitudes and are presented in a companion paper (Bortnik et al., 2006).</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JA011182</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. B. Solid Earth, 2006-02, Vol.111 (A2), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_29076076
source Wiley-Blackwell AGU Digital Archive
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
lightning
MR whistlers
precipitation
title Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 1. Methodology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20signatures%20of%20radiation%20belt%20electron%20precipitation%20induced%20by%20lightning-generated%20MR%20whistler%20waves:%201.%20Methodology&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Bortnik,%20J.&rft.date=2006-02&rft.volume=111&rft.issue=A2&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JA011182&rft_dat=%3Cproquest_cross%3E29076076%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5448-49cf32d24d61112e406cd5ed24eb20aea6991cf5eae9d9ed03199429a8121cdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20402709&rft_id=info:pmid/&rfr_iscdi=true