Loading…

Automatic fog detection and estimation of visibility distance through use of an onboard camera

In this paper, we will present a technique for measuring visibility distances under foggy weather conditions using a camera mounted onboard a moving vehicle. Our research has focused in particular on the problem of detecting daytime fog and estimating visibility distances; thanks to these efforts, a...

Full description

Saved in:
Bibliographic Details
Published in:Machine vision and applications 2006-04, Vol.17 (1), p.8-20
Main Authors: Hautiére, Nicolas, Tarel, Jean-Philippe, Lavenant, Jean, Aubert, Didier
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we will present a technique for measuring visibility distances under foggy weather conditions using a camera mounted onboard a moving vehicle. Our research has focused in particular on the problem of detecting daytime fog and estimating visibility distances; thanks to these efforts, an original method has been developed, tested and patented. The approach consists of dynamically implementing Koschmieder's law. Our method enables computing the meteorological visibility distance, a measure defined by the International Commission on Illumination (CIE) as the distance beyond which a black object of an appropriate dimension is perceived with a contrast of less than 5%. Our proposed solution is an original one, featuring the advantage of utilizing a single camera and necessitating the presence of just the road and sky in the scene. As opposed to other methods that require the explicit extraction of the road, this method offers fewer constraints by virtue of being applicable with no more than the extraction of a homogeneous surface containing a portion of the road and sky within the image. This image preprocessing also serves to identify the level of compatibility of the processed image with the set of Koschmieder's model hypotheses.
ISSN:0932-8092
1432-1769
DOI:10.1007/s00138-005-0011-1