Loading…
Exponential decay rate for a Timoshenko beam with boundary damping
The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by sh...
Saved in:
Published in: | Journal of optimization theory and applications 2004-12, Vol.123 (3), p.669-693 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3 |
container_end_page | 693 |
container_issue | 3 |
container_start_page | 669 |
container_title | Journal of optimization theory and applications |
container_volume | 123 |
creator | XU, G. Q YUNG, S. P |
description | The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable. |
doi_str_mv | 10.1007/s10957-004-5728-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29088405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>945090981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRsFZ_gLtB0F10HplHlir1AQU3dT1MbmZsapKpMwm2_96UFgRXru7mO4dzP4QuKbmlhKi7REkhVEZIngnFdLY5QhMqFM-YVvoYTQhhLOOMF6foLKUVIaTQKp-gh9lmHTrX9bVtcOXAbnG0vcM-RGzxom5DWrruM-DS2RZ_1_0Sl2HoKhu3uLLtuu4-ztGJt01yF4c7Re9Ps8XjSzZ_e359vJ9nwIXuMwBV5JW0THhW5qLgIEoAz32lqAAtvKbcKuVy7QpeSQALpQdOrdaEEwF8im72vesYvgaXetPWCVzT2M6FIRlWEK1zIkbw6g-4CkPsxm2GFlJSreU_IK7kCNE9BDGkFJ0361i34--GErPzbvbezejd7LybzZi5PhTbBLbx0XZQp9-g5ExKJfgPNN2CJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196618865</pqid></control><display><type>article</type><title>Exponential decay rate for a Timoshenko beam with boundary damping</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>XU, G. Q ; YUNG, S. P</creator><creatorcontrib>XU, G. Q ; YUNG, S. P</creatorcontrib><description>The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-004-5728-x</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Applied sciences ; Boundaries ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Eigenvalues ; Eigenvectors ; Exact sciences and technology ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Spectrum analysis ; Studies</subject><ispartof>Journal of optimization theory and applications, 2004-12, Vol.123 (3), p.669-693</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Kluwer Academic Publishers Dec 2004</rights><rights>Springer Science+Business Media, Inc. 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3</citedby><cites>FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/196618865/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/196618865?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16326675$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>XU, G. Q</creatorcontrib><creatorcontrib>YUNG, S. P</creatorcontrib><title>Exponential decay rate for a Timoshenko beam with boundary damping</title><title>Journal of optimization theory and applications</title><description>The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Exact sciences and technology</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Spectrum analysis</subject><subject>Studies</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkEtLw0AUhQdRsFZ_gLtB0F10HplHlir1AQU3dT1MbmZsapKpMwm2_96UFgRXru7mO4dzP4QuKbmlhKi7REkhVEZIngnFdLY5QhMqFM-YVvoYTQhhLOOMF6foLKUVIaTQKp-gh9lmHTrX9bVtcOXAbnG0vcM-RGzxom5DWrruM-DS2RZ_1_0Sl2HoKhu3uLLtuu4-ztGJt01yF4c7Re9Ps8XjSzZ_e359vJ9nwIXuMwBV5JW0THhW5qLgIEoAz32lqAAtvKbcKuVy7QpeSQALpQdOrdaEEwF8im72vesYvgaXetPWCVzT2M6FIRlWEK1zIkbw6g-4CkPsxm2GFlJSreU_IK7kCNE9BDGkFJ0361i34--GErPzbvbezejd7LybzZi5PhTbBLbx0XZQp9-g5ExKJfgPNN2CJw</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>XU, G. Q</creator><creator>YUNG, S. P</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20041201</creationdate><title>Exponential decay rate for a Timoshenko beam with boundary damping</title><author>XU, G. Q ; YUNG, S. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Exact sciences and technology</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Spectrum analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XU, G. Q</creatorcontrib><creatorcontrib>YUNG, S. P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XU, G. Q</au><au>YUNG, S. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential decay rate for a Timoshenko beam with boundary damping</atitle><jtitle>Journal of optimization theory and applications</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>123</volume><issue>3</issue><spage>669</spage><epage>693</epage><pages>669-693</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s10957-004-5728-x</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2004-12, Vol.123 (3), p.669-693 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_29088405 |
source | ABI/INFORM Global; Springer Link |
subjects | Applied sciences Boundaries Computer science control theory systems Control system analysis Control theory. Systems Eigenvalues Eigenvectors Exact sciences and technology Mathematical programming Operational research and scientific management Operational research. Management science Spectrum analysis Studies |
title | Exponential decay rate for a Timoshenko beam with boundary damping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20decay%20rate%20for%20a%20Timoshenko%20beam%20with%20boundary%20damping&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=XU,%20G.%20Q&rft.date=2004-12-01&rft.volume=123&rft.issue=3&rft.spage=669&rft.epage=693&rft.pages=669-693&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1007/s10957-004-5728-x&rft_dat=%3Cproquest_cross%3E945090981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196618865&rft_id=info:pmid/&rfr_iscdi=true |