Loading…

Exponential decay rate for a Timoshenko beam with boundary damping

The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by sh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications 2004-12, Vol.123 (3), p.669-693
Main Authors: XU, G. Q, YUNG, S. P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3
cites cdi_FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3
container_end_page 693
container_issue 3
container_start_page 669
container_title Journal of optimization theory and applications
container_volume 123
creator XU, G. Q
YUNG, S. P
description The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable.
doi_str_mv 10.1007/s10957-004-5728-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29088405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>945090981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRsFZ_gLtB0F10HplHlir1AQU3dT1MbmZsapKpMwm2_96UFgRXru7mO4dzP4QuKbmlhKi7REkhVEZIngnFdLY5QhMqFM-YVvoYTQhhLOOMF6foLKUVIaTQKp-gh9lmHTrX9bVtcOXAbnG0vcM-RGzxom5DWrruM-DS2RZ_1_0Sl2HoKhu3uLLtuu4-ztGJt01yF4c7Re9Ps8XjSzZ_e359vJ9nwIXuMwBV5JW0THhW5qLgIEoAz32lqAAtvKbcKuVy7QpeSQALpQdOrdaEEwF8im72vesYvgaXetPWCVzT2M6FIRlWEK1zIkbw6g-4CkPsxm2GFlJSreU_IK7kCNE9BDGkFJ0361i34--GErPzbvbezejd7LybzZi5PhTbBLbx0XZQp9-g5ExKJfgPNN2CJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196618865</pqid></control><display><type>article</type><title>Exponential decay rate for a Timoshenko beam with boundary damping</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>XU, G. Q ; YUNG, S. P</creator><creatorcontrib>XU, G. Q ; YUNG, S. P</creatorcontrib><description>The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-004-5728-x</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Applied sciences ; Boundaries ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Eigenvalues ; Eigenvectors ; Exact sciences and technology ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Spectrum analysis ; Studies</subject><ispartof>Journal of optimization theory and applications, 2004-12, Vol.123 (3), p.669-693</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Kluwer Academic Publishers Dec 2004</rights><rights>Springer Science+Business Media, Inc. 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3</citedby><cites>FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/196618865/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/196618865?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16326675$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>XU, G. Q</creatorcontrib><creatorcontrib>YUNG, S. P</creatorcontrib><title>Exponential decay rate for a Timoshenko beam with boundary damping</title><title>Journal of optimization theory and applications</title><description>The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Exact sciences and technology</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Spectrum analysis</subject><subject>Studies</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkEtLw0AUhQdRsFZ_gLtB0F10HplHlir1AQU3dT1MbmZsapKpMwm2_96UFgRXru7mO4dzP4QuKbmlhKi7REkhVEZIngnFdLY5QhMqFM-YVvoYTQhhLOOMF6foLKUVIaTQKp-gh9lmHTrX9bVtcOXAbnG0vcM-RGzxom5DWrruM-DS2RZ_1_0Sl2HoKhu3uLLtuu4-ztGJt01yF4c7Re9Ps8XjSzZ_e359vJ9nwIXuMwBV5JW0THhW5qLgIEoAz32lqAAtvKbcKuVy7QpeSQALpQdOrdaEEwF8im72vesYvgaXetPWCVzT2M6FIRlWEK1zIkbw6g-4CkPsxm2GFlJSreU_IK7kCNE9BDGkFJ0361i34--GErPzbvbezejd7LybzZi5PhTbBLbx0XZQp9-g5ExKJfgPNN2CJw</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>XU, G. Q</creator><creator>YUNG, S. P</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20041201</creationdate><title>Exponential decay rate for a Timoshenko beam with boundary damping</title><author>XU, G. Q ; YUNG, S. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Exact sciences and technology</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Spectrum analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XU, G. Q</creatorcontrib><creatorcontrib>YUNG, S. P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XU, G. Q</au><au>YUNG, S. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential decay rate for a Timoshenko beam with boundary damping</atitle><jtitle>Journal of optimization theory and applications</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>123</volume><issue>3</issue><spage>669</spage><epage>693</epage><pages>669-693</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>The exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s10957-004-5728-x</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2004-12, Vol.123 (3), p.669-693
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_29088405
source ABI/INFORM Global; Springer Link
subjects Applied sciences
Boundaries
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Eigenvalues
Eigenvectors
Exact sciences and technology
Mathematical programming
Operational research and scientific management
Operational research. Management science
Spectrum analysis
Studies
title Exponential decay rate for a Timoshenko beam with boundary damping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20decay%20rate%20for%20a%20Timoshenko%20beam%20with%20boundary%20damping&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=XU,%20G.%20Q&rft.date=2004-12-01&rft.volume=123&rft.issue=3&rft.spage=669&rft.epage=693&rft.pages=669-693&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1007/s10957-004-5728-x&rft_dat=%3Cproquest_cross%3E945090981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-cc794d6a25f2b4593c5bccf3fd715c85f813a77e48e93d6ccacbfc31a880305c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196618865&rft_id=info:pmid/&rfr_iscdi=true