Loading…

Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation

Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds,...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2024-02, Vol.234, p.113717-113717, Article 113717
Main Authors: Posada, Viviana M., Ramírez, Juan, Civantos, Ana, Fernández-Morales, Patricia, Allain, Jean Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3
cites cdi_FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3
container_end_page 113717
container_issue
container_start_page 113717
container_title Colloids and surfaces, B, Biointerfaces
container_volume 234
creator Posada, Viviana M.
Ramírez, Juan
Civantos, Ana
Fernández-Morales, Patricia
Allain, Jean Paul
description Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10−3 ± 3.8 × 10−4 mg/cm²/day, compared to the control's 2.3 × 10−2 ± 3.2 × 10−4 mg/cm²/day over 14 days (P  100°.•Plasma radiation controls Mg2+ release, significantly reducing corrosion rates in porous Mg.•Plasma treatment affects hBM-MSC and J774 cells, influencing macrophage behavior.•In DMEM, plasma treatment controls Mg2+ and OH- ion release, aiding Ca-phosphate layer formation.
doi_str_mv 10.1016/j.colsurfb.2023.113717
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2909091167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776523006112</els_id><sourcerecordid>2909091167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3</originalsourceid><addsrcrecordid>eNqFkEtvFDEQhC0EIpvAX4h85DIbP2ZsLydQFCBSJC65W360g1dje7FnIuXEX4-XTbiiPrTUqqpWfQhdUrKlhIqr_daVua012C0jjG8p5ZLKN2hDleTDyIV8izZkx-QgpZjO0Hlre0IIG6l8j864olO_yw36c1vyYEuypvoEeRl8jY-Q8THaOMCp-BiiM0ssGZeAD6WWteFkHjK0uCbcnAmhzL59xjf5l8ku5gdsY3ElHbrLxjkuT9hkj0tboMSU1lx66jr_zfyA3gUzN_j4si_Q_beb--sfw93P77fXX-8Gx4VaBiGVU5yPStLgJ8uVYVxYFoJRzvtx3E3cc0-pJZzRMEmhAjM7Ia0cBYyWX6BPp9hDLb9XaItOsTmYZ5Oh99FsR_pQKmSXipPU1dJahaAPNSZTnzQl-she7_Ure31kr0_su_Hy5cdqE_h_tlfYXfDlJIBe9DFC1c1FyA58rOAW7Uv8349nCReckA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909091167</pqid></control><display><type>article</type><title>Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation</title><source>ScienceDirect Freedom Collection</source><creator>Posada, Viviana M. ; Ramírez, Juan ; Civantos, Ana ; Fernández-Morales, Patricia ; Allain, Jean Paul</creator><creatorcontrib>Posada, Viviana M. ; Ramírez, Juan ; Civantos, Ana ; Fernández-Morales, Patricia ; Allain, Jean Paul</creatorcontrib><description>Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10−3 ± 3.8 × 10−4 mg/cm²/day, compared to the control's 2.3 × 10−2 ± 3.2 × 10−4 mg/cm²/day over 14 days (P &lt; 0.01). The treatment encourages the formation of a Ca-phosphate-rich phase, which facilitates cell spreading and the development of focal adhesion points in hBM-MSCs on the scaffolds. Additionally, J774A.1 murine macrophages show an enhanced immune response with diminished TNF-α cytokine expression. These results offer insights into nanoscale modifications of Mg-based biomaterials and their promise for bone substitutes or tissue engineering scaffolds. [Display omitted] •Ar+ bombardment modifies surface topography and chemistry, maintaining scaffold architecture.•Ar+ bombardment treatment leads to hydrophobic properties and nanostructures, angle &gt; 100°.•Plasma radiation controls Mg2+ release, significantly reducing corrosion rates in porous Mg.•Plasma treatment affects hBM-MSC and J774 cells, influencing macrophage behavior.•In DMEM, plasma treatment controls Mg2+ and OH- ion release, aiding Ca-phosphate layer formation.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2023.113717</identifier><identifier>PMID: 38157767</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Biocompatible Materials - pharmacology ; Cellular materials ; Corrosion ; Corrosion resistance ; Directed Plasma Nanosynthesis ; Magnesium ; Magnesium - chemistry ; Magnesium - pharmacology ; Mice ; Nano-medicine ; Nanotopography ; Porosity ; Tissue Engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2024-02, Vol.234, p.113717-113717, Article 113717</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3</citedby><cites>FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3</cites><orcidid>0000-0003-2344-1418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38157767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Posada, Viviana M.</creatorcontrib><creatorcontrib>Ramírez, Juan</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Fernández-Morales, Patricia</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><title>Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10−3 ± 3.8 × 10−4 mg/cm²/day, compared to the control's 2.3 × 10−2 ± 3.2 × 10−4 mg/cm²/day over 14 days (P &lt; 0.01). The treatment encourages the formation of a Ca-phosphate-rich phase, which facilitates cell spreading and the development of focal adhesion points in hBM-MSCs on the scaffolds. Additionally, J774A.1 murine macrophages show an enhanced immune response with diminished TNF-α cytokine expression. These results offer insights into nanoscale modifications of Mg-based biomaterials and their promise for bone substitutes or tissue engineering scaffolds. [Display omitted] •Ar+ bombardment modifies surface topography and chemistry, maintaining scaffold architecture.•Ar+ bombardment treatment leads to hydrophobic properties and nanostructures, angle &gt; 100°.•Plasma radiation controls Mg2+ release, significantly reducing corrosion rates in porous Mg.•Plasma treatment affects hBM-MSC and J774 cells, influencing macrophage behavior.•In DMEM, plasma treatment controls Mg2+ and OH- ion release, aiding Ca-phosphate layer formation.</description><subject>Animals</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Cellular materials</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Directed Plasma Nanosynthesis</subject><subject>Magnesium</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - pharmacology</subject><subject>Mice</subject><subject>Nano-medicine</subject><subject>Nanotopography</subject><subject>Porosity</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtvFDEQhC0EIpvAX4h85DIbP2ZsLydQFCBSJC65W360g1dje7FnIuXEX4-XTbiiPrTUqqpWfQhdUrKlhIqr_daVua012C0jjG8p5ZLKN2hDleTDyIV8izZkx-QgpZjO0Hlre0IIG6l8j864olO_yw36c1vyYEuypvoEeRl8jY-Q8THaOMCp-BiiM0ssGZeAD6WWteFkHjK0uCbcnAmhzL59xjf5l8ku5gdsY3ElHbrLxjkuT9hkj0tboMSU1lx66jr_zfyA3gUzN_j4si_Q_beb--sfw93P77fXX-8Gx4VaBiGVU5yPStLgJ8uVYVxYFoJRzvtx3E3cc0-pJZzRMEmhAjM7Ia0cBYyWX6BPp9hDLb9XaItOsTmYZ5Oh99FsR_pQKmSXipPU1dJahaAPNSZTnzQl-she7_Ure31kr0_su_Hy5cdqE_h_tlfYXfDlJIBe9DFC1c1FyA58rOAW7Uv8349nCReckA</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Posada, Viviana M.</creator><creator>Ramírez, Juan</creator><creator>Civantos, Ana</creator><creator>Fernández-Morales, Patricia</creator><creator>Allain, Jean Paul</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2344-1418</orcidid></search><sort><creationdate>202402</creationdate><title>Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation</title><author>Posada, Viviana M. ; Ramírez, Juan ; Civantos, Ana ; Fernández-Morales, Patricia ; Allain, Jean Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Cellular materials</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Directed Plasma Nanosynthesis</topic><topic>Magnesium</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - pharmacology</topic><topic>Mice</topic><topic>Nano-medicine</topic><topic>Nanotopography</topic><topic>Porosity</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Posada, Viviana M.</creatorcontrib><creatorcontrib>Ramírez, Juan</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Fernández-Morales, Patricia</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Posada, Viviana M.</au><au>Ramírez, Juan</au><au>Civantos, Ana</au><au>Fernández-Morales, Patricia</au><au>Allain, Jean Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2024-02</date><risdate>2024</risdate><volume>234</volume><spage>113717</spage><epage>113717</epage><pages>113717-113717</pages><artnum>113717</artnum><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10−3 ± 3.8 × 10−4 mg/cm²/day, compared to the control's 2.3 × 10−2 ± 3.2 × 10−4 mg/cm²/day over 14 days (P &lt; 0.01). The treatment encourages the formation of a Ca-phosphate-rich phase, which facilitates cell spreading and the development of focal adhesion points in hBM-MSCs on the scaffolds. Additionally, J774A.1 murine macrophages show an enhanced immune response with diminished TNF-α cytokine expression. These results offer insights into nanoscale modifications of Mg-based biomaterials and their promise for bone substitutes or tissue engineering scaffolds. [Display omitted] •Ar+ bombardment modifies surface topography and chemistry, maintaining scaffold architecture.•Ar+ bombardment treatment leads to hydrophobic properties and nanostructures, angle &gt; 100°.•Plasma radiation controls Mg2+ release, significantly reducing corrosion rates in porous Mg.•Plasma treatment affects hBM-MSC and J774 cells, influencing macrophage behavior.•In DMEM, plasma treatment controls Mg2+ and OH- ion release, aiding Ca-phosphate layer formation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38157767</pmid><doi>10.1016/j.colsurfb.2023.113717</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2344-1418</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2024-02, Vol.234, p.113717-113717, Article 113717
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_2909091167
source ScienceDirect Freedom Collection
subjects Animals
Biocompatible Materials - pharmacology
Cellular materials
Corrosion
Corrosion resistance
Directed Plasma Nanosynthesis
Magnesium
Magnesium - chemistry
Magnesium - pharmacology
Mice
Nano-medicine
Nanotopography
Porosity
Tissue Engineering
Tissue Scaffolds - chemistry
title Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion-bombardment-driven%20surface%20modification%20of%20porous%20magnesium%20scaffolds:%20Enhancing%20biocompatibility%20and%20osteoimmunomodulation&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Posada,%20Viviana%20M.&rft.date=2024-02&rft.volume=234&rft.spage=113717&rft.epage=113717&rft.pages=113717-113717&rft.artnum=113717&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2023.113717&rft_dat=%3Cproquest_cross%3E2909091167%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909091167&rft_id=info:pmid/38157767&rfr_iscdi=true