Loading…
Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation
Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds,...
Saved in:
Published in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2024-02, Vol.234, p.113717-113717, Article 113717 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3 |
container_end_page | 113717 |
container_issue | |
container_start_page | 113717 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 234 |
creator | Posada, Viviana M. Ramírez, Juan Civantos, Ana Fernández-Morales, Patricia Allain, Jean Paul |
description | Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10−3 ± 3.8 × 10−4 mg/cm²/day, compared to the control's 2.3 × 10−2 ± 3.2 × 10−4 mg/cm²/day over 14 days (P 100°.•Plasma radiation controls Mg2+ release, significantly reducing corrosion rates in porous Mg.•Plasma treatment affects hBM-MSC and J774 cells, influencing macrophage behavior.•In DMEM, plasma treatment controls Mg2+ and OH- ion release, aiding Ca-phosphate layer formation. |
doi_str_mv | 10.1016/j.colsurfb.2023.113717 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2909091167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776523006112</els_id><sourcerecordid>2909091167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3</originalsourceid><addsrcrecordid>eNqFkEtvFDEQhC0EIpvAX4h85DIbP2ZsLydQFCBSJC65W360g1dje7FnIuXEX4-XTbiiPrTUqqpWfQhdUrKlhIqr_daVua012C0jjG8p5ZLKN2hDleTDyIV8izZkx-QgpZjO0Hlre0IIG6l8j864olO_yw36c1vyYEuypvoEeRl8jY-Q8THaOMCp-BiiM0ssGZeAD6WWteFkHjK0uCbcnAmhzL59xjf5l8ku5gdsY3ElHbrLxjkuT9hkj0tboMSU1lx66jr_zfyA3gUzN_j4si_Q_beb--sfw93P77fXX-8Gx4VaBiGVU5yPStLgJ8uVYVxYFoJRzvtx3E3cc0-pJZzRMEmhAjM7Ia0cBYyWX6BPp9hDLb9XaItOsTmYZ5Oh99FsR_pQKmSXipPU1dJahaAPNSZTnzQl-she7_Ure31kr0_su_Hy5cdqE_h_tlfYXfDlJIBe9DFC1c1FyA58rOAW7Uv8349nCReckA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909091167</pqid></control><display><type>article</type><title>Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation</title><source>ScienceDirect Freedom Collection</source><creator>Posada, Viviana M. ; Ramírez, Juan ; Civantos, Ana ; Fernández-Morales, Patricia ; Allain, Jean Paul</creator><creatorcontrib>Posada, Viviana M. ; Ramírez, Juan ; Civantos, Ana ; Fernández-Morales, Patricia ; Allain, Jean Paul</creatorcontrib><description>Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10−3 ± 3.8 × 10−4 mg/cm²/day, compared to the control's 2.3 × 10−2 ± 3.2 × 10−4 mg/cm²/day over 14 days (P < 0.01). The treatment encourages the formation of a Ca-phosphate-rich phase, which facilitates cell spreading and the development of focal adhesion points in hBM-MSCs on the scaffolds. Additionally, J774A.1 murine macrophages show an enhanced immune response with diminished TNF-α cytokine expression. These results offer insights into nanoscale modifications of Mg-based biomaterials and their promise for bone substitutes or tissue engineering scaffolds.
[Display omitted]
•Ar+ bombardment modifies surface topography and chemistry, maintaining scaffold architecture.•Ar+ bombardment treatment leads to hydrophobic properties and nanostructures, angle > 100°.•Plasma radiation controls Mg2+ release, significantly reducing corrosion rates in porous Mg.•Plasma treatment affects hBM-MSC and J774 cells, influencing macrophage behavior.•In DMEM, plasma treatment controls Mg2+ and OH- ion release, aiding Ca-phosphate layer formation.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2023.113717</identifier><identifier>PMID: 38157767</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Biocompatible Materials - pharmacology ; Cellular materials ; Corrosion ; Corrosion resistance ; Directed Plasma Nanosynthesis ; Magnesium ; Magnesium - chemistry ; Magnesium - pharmacology ; Mice ; Nano-medicine ; Nanotopography ; Porosity ; Tissue Engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2024-02, Vol.234, p.113717-113717, Article 113717</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3</citedby><cites>FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3</cites><orcidid>0000-0003-2344-1418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38157767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Posada, Viviana M.</creatorcontrib><creatorcontrib>Ramírez, Juan</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Fernández-Morales, Patricia</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><title>Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10−3 ± 3.8 × 10−4 mg/cm²/day, compared to the control's 2.3 × 10−2 ± 3.2 × 10−4 mg/cm²/day over 14 days (P < 0.01). The treatment encourages the formation of a Ca-phosphate-rich phase, which facilitates cell spreading and the development of focal adhesion points in hBM-MSCs on the scaffolds. Additionally, J774A.1 murine macrophages show an enhanced immune response with diminished TNF-α cytokine expression. These results offer insights into nanoscale modifications of Mg-based biomaterials and their promise for bone substitutes or tissue engineering scaffolds.
[Display omitted]
•Ar+ bombardment modifies surface topography and chemistry, maintaining scaffold architecture.•Ar+ bombardment treatment leads to hydrophobic properties and nanostructures, angle > 100°.•Plasma radiation controls Mg2+ release, significantly reducing corrosion rates in porous Mg.•Plasma treatment affects hBM-MSC and J774 cells, influencing macrophage behavior.•In DMEM, plasma treatment controls Mg2+ and OH- ion release, aiding Ca-phosphate layer formation.</description><subject>Animals</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Cellular materials</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Directed Plasma Nanosynthesis</subject><subject>Magnesium</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - pharmacology</subject><subject>Mice</subject><subject>Nano-medicine</subject><subject>Nanotopography</subject><subject>Porosity</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtvFDEQhC0EIpvAX4h85DIbP2ZsLydQFCBSJC65W360g1dje7FnIuXEX4-XTbiiPrTUqqpWfQhdUrKlhIqr_daVua012C0jjG8p5ZLKN2hDleTDyIV8izZkx-QgpZjO0Hlre0IIG6l8j864olO_yw36c1vyYEuypvoEeRl8jY-Q8THaOMCp-BiiM0ssGZeAD6WWteFkHjK0uCbcnAmhzL59xjf5l8ku5gdsY3ElHbrLxjkuT9hkj0tboMSU1lx66jr_zfyA3gUzN_j4si_Q_beb--sfw93P77fXX-8Gx4VaBiGVU5yPStLgJ8uVYVxYFoJRzvtx3E3cc0-pJZzRMEmhAjM7Ia0cBYyWX6BPp9hDLb9XaItOsTmYZ5Oh99FsR_pQKmSXipPU1dJahaAPNSZTnzQl-she7_Ure31kr0_su_Hy5cdqE_h_tlfYXfDlJIBe9DFC1c1FyA58rOAW7Uv8349nCReckA</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Posada, Viviana M.</creator><creator>Ramírez, Juan</creator><creator>Civantos, Ana</creator><creator>Fernández-Morales, Patricia</creator><creator>Allain, Jean Paul</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2344-1418</orcidid></search><sort><creationdate>202402</creationdate><title>Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation</title><author>Posada, Viviana M. ; Ramírez, Juan ; Civantos, Ana ; Fernández-Morales, Patricia ; Allain, Jean Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Cellular materials</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Directed Plasma Nanosynthesis</topic><topic>Magnesium</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - pharmacology</topic><topic>Mice</topic><topic>Nano-medicine</topic><topic>Nanotopography</topic><topic>Porosity</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Posada, Viviana M.</creatorcontrib><creatorcontrib>Ramírez, Juan</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Fernández-Morales, Patricia</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Posada, Viviana M.</au><au>Ramírez, Juan</au><au>Civantos, Ana</au><au>Fernández-Morales, Patricia</au><au>Allain, Jean Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2024-02</date><risdate>2024</risdate><volume>234</volume><spage>113717</spage><epage>113717</epage><pages>113717-113717</pages><artnum>113717</artnum><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm−2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10−3 ± 3.8 × 10−4 mg/cm²/day, compared to the control's 2.3 × 10−2 ± 3.2 × 10−4 mg/cm²/day over 14 days (P < 0.01). The treatment encourages the formation of a Ca-phosphate-rich phase, which facilitates cell spreading and the development of focal adhesion points in hBM-MSCs on the scaffolds. Additionally, J774A.1 murine macrophages show an enhanced immune response with diminished TNF-α cytokine expression. These results offer insights into nanoscale modifications of Mg-based biomaterials and their promise for bone substitutes or tissue engineering scaffolds.
[Display omitted]
•Ar+ bombardment modifies surface topography and chemistry, maintaining scaffold architecture.•Ar+ bombardment treatment leads to hydrophobic properties and nanostructures, angle > 100°.•Plasma radiation controls Mg2+ release, significantly reducing corrosion rates in porous Mg.•Plasma treatment affects hBM-MSC and J774 cells, influencing macrophage behavior.•In DMEM, plasma treatment controls Mg2+ and OH- ion release, aiding Ca-phosphate layer formation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38157767</pmid><doi>10.1016/j.colsurfb.2023.113717</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2344-1418</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2024-02, Vol.234, p.113717-113717, Article 113717 |
issn | 0927-7765 1873-4367 |
language | eng |
recordid | cdi_proquest_miscellaneous_2909091167 |
source | ScienceDirect Freedom Collection |
subjects | Animals Biocompatible Materials - pharmacology Cellular materials Corrosion Corrosion resistance Directed Plasma Nanosynthesis Magnesium Magnesium - chemistry Magnesium - pharmacology Mice Nano-medicine Nanotopography Porosity Tissue Engineering Tissue Scaffolds - chemistry |
title | Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion-bombardment-driven%20surface%20modification%20of%20porous%20magnesium%20scaffolds:%20Enhancing%20biocompatibility%20and%20osteoimmunomodulation&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Posada,%20Viviana%20M.&rft.date=2024-02&rft.volume=234&rft.spage=113717&rft.epage=113717&rft.pages=113717-113717&rft.artnum=113717&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2023.113717&rft_dat=%3Cproquest_cross%3E2909091167%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-678c8334871fd5b38a236b2ffa8cdd44953d3d11b0321f5768f2a967b746e4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909091167&rft_id=info:pmid/38157767&rfr_iscdi=true |