Loading…

Chronic Pb exposure impairs learning and memory abilities by inhibiting excitatory projection neuro-circuit of the hippocampus in mice

Lead (Pb) is an environmental neurotoxic metal. Chronic Pb exposure causes behavioral changes in humans and rodents, such as dysfunctional learning and memory. Nevertheless, it is not clear whether Pb exposure disrupts the neural circuit. Thus, here we aim at investigating the effects the chronic Pb...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology (Amsterdam) 2024-02, Vol.502, p.153717-153717, Article 153717
Main Authors: Zou, Rong-Xin, Gu, Xiaozhen, Huang, Chenqing, Wang, Hui-Li, Chen, Xiang-tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lead (Pb) is an environmental neurotoxic metal. Chronic Pb exposure causes behavioral changes in humans and rodents, such as dysfunctional learning and memory. Nevertheless, it is not clear whether Pb exposure disrupts the neural circuit. Thus, here we aim at investigating the effects the chronic Pb exposure on neural-behavioral and neural circuits in mice from prenatal to postnatal day (PND) 63. Pregnant mice and their male offspring were treated with Pb (150 ppm) until postnatal day 63. In this study, several behavior tests and Golgi-Cox staining methods were used to assess spatial memory ability and synaptogenesis. Virus-based tracing systems and immunohistochemistry assays were used to test the relevance of chronic Pb exposure with disrupted neural circuits. The behavioral experiments and Golgi-Cox staining results showed that Pb exposure impaired spatial memory and spine density in mice. The virus tracing results revealed that the Entorhinal cortex (EC) neurons could be directly projected to Cornuammonis 1 (CA1) and Dentate gyrus (DG), forming a critical circuit inhibited, in either a direct or indirect way, by Pb invasion. In addition, excitatory neural input from EC(labeled with CaMKII)to CA1 and DG was significantly attenuated by Pb exposure. In conclusion, our data indicated that Pb significantly impaired the excitatory connections from EC to the hippocampus (CA1 and DG), providing a novel neuro-circuitry basis for Pb neurotoxicity.
ISSN:0300-483X
1879-3185
DOI:10.1016/j.tox.2023.153717