Loading…

Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation

Implantable neuroelectronic interfaces have gained significant importance in long-term brain–computer interfacing and neuroscience therapy. However, due to the mechanical and geometrical mismatches between the electrode–nerve interfaces, personalized and compatible neural interfaces remain serious i...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2024-01, Vol.18 (2), p.1702-1713
Main Authors: Dong, Ruihua, Wang, Lulu, Li, Zebin, Jiao, Jincheng, Wu, Yan, Feng, Zhuowei, Wang, Xufang, Chen, Minglong, Cui, Chang, Lu, Yi, Jiang, Xingyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a287t-13af26ed7c77ab7216669b4c34ef40ed021a03433eef782218e19b01fbe4c80f3
container_end_page 1713
container_issue 2
container_start_page 1702
container_title ACS nano
container_volume 18
creator Dong, Ruihua
Wang, Lulu
Li, Zebin
Jiao, Jincheng
Wu, Yan
Feng, Zhuowei
Wang, Xufang
Chen, Minglong
Cui, Chang
Lu, Yi
Jiang, Xingyu
description Implantable neuroelectronic interfaces have gained significant importance in long-term brain–computer interfacing and neuroscience therapy. However, due to the mechanical and geometrical mismatches between the electrode–nerve interfaces, personalized and compatible neural interfaces remain serious issues for peripheral neuromodulation. This study introduces the stretchable and flexible electronics class as a self-rolled neural interface for neurological diagnosis and modulation. These stretchable electronics are made from liquid metal–polymer conductors with a high resolution of 30 μm using microfluidic printing technology. They exhibit high conformability and stretchability (over 600% strain) during body movements and have good biocompatibility during long-term implantation (over 8 weeks). These stretchable electronics offer real-time monitoring of epileptiform activities with excellent conformability to soft brain tissue. The study also develops self-rolled microfluidic electrodes that tightly wind the deforming nerves with minimal constraint (160 μm in diameter). The in vivo signal recording of the vagus and sciatic nerve demonstrates the potential of self-rolled cuff electrodes for sciatic and vagus neural modulation by recording action potential and reducing heart rate. The findings of this study suggest that the robust, easy-to-use self-rolled microfluidic electrodes may provide useful tools for compatible neuroelectronics and neural modulation.
doi_str_mv 10.1021/acsnano.3c10028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2909092388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909092388</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-13af26ed7c77ab7216669b4c34ef40ed021a03433eef782218e19b01fbe4c80f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUwsyGPSDStP9LEHaEqUKmARAGxRY5zhlSOXexkgF9P-kE3dMPd8LyvdA9C55QMKGF0KFWw0roBV5QQJg5Ql455EhGRvB_u7xHtoJMQloSMUpEmx6jDBU1GjNMu-lnUHmr1KXMDfbwAo6NnZwwUffxQKu-0acqiVHhqQNXe2VIFPLVrGk-c1c5Xm_sRGi8NntkavJYKAnYa33hZWixtgd_kRxM2kKtc0RhZl86eoiMtTYCz3e6h19vpy-Q-mj_dzSbX80gykdYR5VKzBIpUpanMU0aTJBnnseIx6JhA0WqQhMecA-hUMEYF0HFOqM4hVoJo3kOX296Vd18NhDqryqDAGGnBNSFjY9IO40K06HCLtp-H4EFnK19W0n9nlGRr4dlOeLYT3iYuduVNXkGx5_8Mt8DVFmiT2dI13ra__lv3C6R6jVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909092388</pqid></control><display><type>article</type><title>Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Dong, Ruihua ; Wang, Lulu ; Li, Zebin ; Jiao, Jincheng ; Wu, Yan ; Feng, Zhuowei ; Wang, Xufang ; Chen, Minglong ; Cui, Chang ; Lu, Yi ; Jiang, Xingyu</creator><creatorcontrib>Dong, Ruihua ; Wang, Lulu ; Li, Zebin ; Jiao, Jincheng ; Wu, Yan ; Feng, Zhuowei ; Wang, Xufang ; Chen, Minglong ; Cui, Chang ; Lu, Yi ; Jiang, Xingyu</creatorcontrib><description>Implantable neuroelectronic interfaces have gained significant importance in long-term brain–computer interfacing and neuroscience therapy. However, due to the mechanical and geometrical mismatches between the electrode–nerve interfaces, personalized and compatible neural interfaces remain serious issues for peripheral neuromodulation. This study introduces the stretchable and flexible electronics class as a self-rolled neural interface for neurological diagnosis and modulation. These stretchable electronics are made from liquid metal–polymer conductors with a high resolution of 30 μm using microfluidic printing technology. They exhibit high conformability and stretchability (over 600% strain) during body movements and have good biocompatibility during long-term implantation (over 8 weeks). These stretchable electronics offer real-time monitoring of epileptiform activities with excellent conformability to soft brain tissue. The study also develops self-rolled microfluidic electrodes that tightly wind the deforming nerves with minimal constraint (160 μm in diameter). The in vivo signal recording of the vagus and sciatic nerve demonstrates the potential of self-rolled cuff electrodes for sciatic and vagus neural modulation by recording action potential and reducing heart rate. The findings of this study suggest that the robust, easy-to-use self-rolled microfluidic electrodes may provide useful tools for compatible neuroelectronics and neural modulation.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c10028</identifier><identifier>PMID: 38165231</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Brain ; Electrodes ; Electronics ; Microfluidics ; Sciatic Nerve</subject><ispartof>ACS nano, 2024-01, Vol.18 (2), p.1702-1713</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a287t-13af26ed7c77ab7216669b4c34ef40ed021a03433eef782218e19b01fbe4c80f3</cites><orcidid>0000-0002-5008-4703 ; 0000-0003-0569-6599 ; 0000-0002-9844-486X ; 0000-0002-0675-1695 ; 0000-0002-5349-6295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38165231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Ruihua</creatorcontrib><creatorcontrib>Wang, Lulu</creatorcontrib><creatorcontrib>Li, Zebin</creatorcontrib><creatorcontrib>Jiao, Jincheng</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Feng, Zhuowei</creatorcontrib><creatorcontrib>Wang, Xufang</creatorcontrib><creatorcontrib>Chen, Minglong</creatorcontrib><creatorcontrib>Cui, Chang</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><title>Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Implantable neuroelectronic interfaces have gained significant importance in long-term brain–computer interfacing and neuroscience therapy. However, due to the mechanical and geometrical mismatches between the electrode–nerve interfaces, personalized and compatible neural interfaces remain serious issues for peripheral neuromodulation. This study introduces the stretchable and flexible electronics class as a self-rolled neural interface for neurological diagnosis and modulation. These stretchable electronics are made from liquid metal–polymer conductors with a high resolution of 30 μm using microfluidic printing technology. They exhibit high conformability and stretchability (over 600% strain) during body movements and have good biocompatibility during long-term implantation (over 8 weeks). These stretchable electronics offer real-time monitoring of epileptiform activities with excellent conformability to soft brain tissue. The study also develops self-rolled microfluidic electrodes that tightly wind the deforming nerves with minimal constraint (160 μm in diameter). The in vivo signal recording of the vagus and sciatic nerve demonstrates the potential of self-rolled cuff electrodes for sciatic and vagus neural modulation by recording action potential and reducing heart rate. The findings of this study suggest that the robust, easy-to-use self-rolled microfluidic electrodes may provide useful tools for compatible neuroelectronics and neural modulation.</description><subject>Brain</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Microfluidics</subject><subject>Sciatic Nerve</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUwsyGPSDStP9LEHaEqUKmARAGxRY5zhlSOXexkgF9P-kE3dMPd8LyvdA9C55QMKGF0KFWw0roBV5QQJg5Ql455EhGRvB_u7xHtoJMQloSMUpEmx6jDBU1GjNMu-lnUHmr1KXMDfbwAo6NnZwwUffxQKu-0acqiVHhqQNXe2VIFPLVrGk-c1c5Xm_sRGi8NntkavJYKAnYa33hZWixtgd_kRxM2kKtc0RhZl86eoiMtTYCz3e6h19vpy-Q-mj_dzSbX80gykdYR5VKzBIpUpanMU0aTJBnnseIx6JhA0WqQhMecA-hUMEYF0HFOqM4hVoJo3kOX296Vd18NhDqryqDAGGnBNSFjY9IO40K06HCLtp-H4EFnK19W0n9nlGRr4dlOeLYT3iYuduVNXkGx5_8Mt8DVFmiT2dI13ra__lv3C6R6jVw</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Dong, Ruihua</creator><creator>Wang, Lulu</creator><creator>Li, Zebin</creator><creator>Jiao, Jincheng</creator><creator>Wu, Yan</creator><creator>Feng, Zhuowei</creator><creator>Wang, Xufang</creator><creator>Chen, Minglong</creator><creator>Cui, Chang</creator><creator>Lu, Yi</creator><creator>Jiang, Xingyu</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5008-4703</orcidid><orcidid>https://orcid.org/0000-0003-0569-6599</orcidid><orcidid>https://orcid.org/0000-0002-9844-486X</orcidid><orcidid>https://orcid.org/0000-0002-0675-1695</orcidid><orcidid>https://orcid.org/0000-0002-5349-6295</orcidid></search><sort><creationdate>20240116</creationdate><title>Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation</title><author>Dong, Ruihua ; Wang, Lulu ; Li, Zebin ; Jiao, Jincheng ; Wu, Yan ; Feng, Zhuowei ; Wang, Xufang ; Chen, Minglong ; Cui, Chang ; Lu, Yi ; Jiang, Xingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-13af26ed7c77ab7216669b4c34ef40ed021a03433eef782218e19b01fbe4c80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Microfluidics</topic><topic>Sciatic Nerve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Ruihua</creatorcontrib><creatorcontrib>Wang, Lulu</creatorcontrib><creatorcontrib>Li, Zebin</creatorcontrib><creatorcontrib>Jiao, Jincheng</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Feng, Zhuowei</creatorcontrib><creatorcontrib>Wang, Xufang</creatorcontrib><creatorcontrib>Chen, Minglong</creatorcontrib><creatorcontrib>Cui, Chang</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Ruihua</au><au>Wang, Lulu</au><au>Li, Zebin</au><au>Jiao, Jincheng</au><au>Wu, Yan</au><au>Feng, Zhuowei</au><au>Wang, Xufang</au><au>Chen, Minglong</au><au>Cui, Chang</au><au>Lu, Yi</au><au>Jiang, Xingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>1702</spage><epage>1713</epage><pages>1702-1713</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Implantable neuroelectronic interfaces have gained significant importance in long-term brain–computer interfacing and neuroscience therapy. However, due to the mechanical and geometrical mismatches between the electrode–nerve interfaces, personalized and compatible neural interfaces remain serious issues for peripheral neuromodulation. This study introduces the stretchable and flexible electronics class as a self-rolled neural interface for neurological diagnosis and modulation. These stretchable electronics are made from liquid metal–polymer conductors with a high resolution of 30 μm using microfluidic printing technology. They exhibit high conformability and stretchability (over 600% strain) during body movements and have good biocompatibility during long-term implantation (over 8 weeks). These stretchable electronics offer real-time monitoring of epileptiform activities with excellent conformability to soft brain tissue. The study also develops self-rolled microfluidic electrodes that tightly wind the deforming nerves with minimal constraint (160 μm in diameter). The in vivo signal recording of the vagus and sciatic nerve demonstrates the potential of self-rolled cuff electrodes for sciatic and vagus neural modulation by recording action potential and reducing heart rate. The findings of this study suggest that the robust, easy-to-use self-rolled microfluidic electrodes may provide useful tools for compatible neuroelectronics and neural modulation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38165231</pmid><doi>10.1021/acsnano.3c10028</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5008-4703</orcidid><orcidid>https://orcid.org/0000-0003-0569-6599</orcidid><orcidid>https://orcid.org/0000-0002-9844-486X</orcidid><orcidid>https://orcid.org/0000-0002-0675-1695</orcidid><orcidid>https://orcid.org/0000-0002-5349-6295</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-01, Vol.18 (2), p.1702-1713
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2909092388
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Brain
Electrodes
Electronics
Microfluidics
Sciatic Nerve
title Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretchable,%20Self-Rolled,%20Microfluidic%20Electronics%20Enable%20Conformable%20Neural%20Interfaces%20of%20Brain%20and%20Vagus%20Neuromodulation&rft.jtitle=ACS%20nano&rft.au=Dong,%20Ruihua&rft.date=2024-01-16&rft.volume=18&rft.issue=2&rft.spage=1702&rft.epage=1713&rft.pages=1702-1713&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c10028&rft_dat=%3Cproquest_cross%3E2909092388%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a287t-13af26ed7c77ab7216669b4c34ef40ed021a03433eef782218e19b01fbe4c80f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909092388&rft_id=info:pmid/38165231&rfr_iscdi=true