Loading…

Metal Clusters Confined in Chiral Zeolitic Imidazolate Framework for Circularly Polarized-Luminescence Inks

Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a form...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2024-02, Vol.24 (6), p.2048-2056
Main Authors: Zhang, Chong, Guan, Shan, Li, Hai-Yang, Dong, Xi-Yan, Zang, Shuang-Quan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host–guest approachcentered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed “NCs@CMOF” featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c04698