Loading…

Morphology and stability of droplets sliding on soft viscoelastic substrates

We show that energy dissipation partition between a liquid and a solid controls the shape and stability of droplets sliding on viscoelastic gels. When both phases dissipate energy equally, droplet dynamics is similar to that on rigid solids. When the solid is the major contributor to dissipation, we...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2024-01, Vol.2 (4), p.762-772
Main Authors: Oléron, Mathieu, Limat, Laurent, Dervaux, Julien, Roché, Matthieu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that energy dissipation partition between a liquid and a solid controls the shape and stability of droplets sliding on viscoelastic gels. When both phases dissipate energy equally, droplet dynamics is similar to that on rigid solids. When the solid is the major contributor to dissipation, we observe an apparent contact angle hysteresis of viscoelastic origin. We find excellent agreement between our data and a non-linear model of the wetting of gels of our own that also indicates the presence of significant slip. Our work opens general questions on the dynamics of curved contact lines on compliant substrates. We provide experiments and a model to describe the dependence of the shape and dynamics of a droplet sliding on a soft gel.
ISSN:1744-683X
1744-6848
DOI:10.1039/d3sm01197f