Loading…

Braking Behavior of C/SiC Composites Prepared by Chemical Vapor Infiltration

Carbon fiber‐reinforced silicon carbide matrix composites have the potential to overcome the shortcoming of the currently used carbon/carbon friction materials in aircraft brakes. In this article, the carbon/silicon carbide (C/SiC) composites were prepared by chemical vapor infiltration method, and...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied ceramic technology 2005-01, Vol.2 (2), p.114-121
Main Authors: Zhang, Yani, Xu, Yongdong, Lou, Jianjun, Zhang, Litong, Cheng, Laifei, Chen, Zhijun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon fiber‐reinforced silicon carbide matrix composites have the potential to overcome the shortcoming of the currently used carbon/carbon friction materials in aircraft brakes. In this article, the carbon/silicon carbide (C/SiC) composites were prepared by chemical vapor infiltration method, and the brake disks with different densities and component content were finally obtained. The friction coefficient and friction stability can be significantly improved by increasing both material density and carbon content. When the density of C/SiC composite is 2.3 g/cm3, the coefficient of friction measured is 0.23, the coefficient of friction stability remains about 0.43, the liner wear rate is less than 9.3 μm/cycle, and the weight wear rate is less than 9.1 μm/cycle. The rapid increase of friction coefficient approaching the end of braking is mainly related to the increasing of surface temperature in a short time and the enhanced adhesion and abrasion of contact conjunctions and asperities. The C/SiC composites exhibited a good stability of braking against fading versus the braking number and surface temperature. The surfaces of C/SiC brake disks were covered with wear debris including the fragment of carbon fibers after the braking tests. The wear on the surfaces is significantly determined by cyclic mechanical and thermal stresses, which result in the micro‐cracks in the SiC matrix, the thin flakes of the surface materials as well as the grooves.
ISSN:1546-542X
1744-7402
DOI:10.1111/j.1744-7402.2005.02013.x