Loading…

Design, Synthesis, and Evaluation of New 1H-Benzodimidazole Based PqsR Inhibitors as Adjuvant Therapy for Pseudomonas aeruginosa Infections

Pseudomonas aeruginosa is one of the top priority pathogens that requires immediate attention according to the World Health Organisation (WHO). Due to the alarming shortage of novel antimicrobials, targeting quorum sensing (QS), a bacterial cell to cell signaling system controlling virulence, has em...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2024-01, Vol.67 (2), p.1008
Main Authors: Soukarieh, Fadi, Mashabi, Alaa, Richardson, William, Oton, Eduard Vico, Romero, Manuel, Dubern, Jean-Frédéric, Robertson, Shaun N, Lucanto, Simone, Markham-Lee, Zoe, Sou, Tomás, Kukavica-Ibrulj, Irena, Levesque, Roger C, Bergstrom, Christel A S, Halliday, Nigel, Kellam, Barrie, Emsley, Jonas, Heeb, Stephan, Williams, Paul, Stocks, Michael J, Cámara, Miguel
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pseudomonas aeruginosa is one of the top priority pathogens that requires immediate attention according to the World Health Organisation (WHO). Due to the alarming shortage of novel antimicrobials, targeting quorum sensing (QS), a bacterial cell to cell signaling system controlling virulence, has emerged as a promising approach as an antibiotic adjuvant therapy. Interference with the pqs system, one of three QS systems in P. aeruginosa, results in reduction of bacterial virulence gene expression and biofilm maturation. Herein, we report a hit to lead process to fine-tune the potency of our previously reported inhibitor 1 (IC50 3.2 μM in P. aeruginosa PAO1-L), which led to the discovery of 2-(4-(3-((6-chloro-1-isopropyl-1H-benzo[d]imidazol-2-yl)amino)-2-hydroxypropoxy)phenyl)acetonitrile (6f) as a potent PqsR antagonist. Compound 6f inhibited the PqsR-controlled PpqsA-lux transcriptional reporter fusion in P. aeruginosa at low submicromolar concentrations. Moreover, 6f showed improved efficacy against P. aeruginosa CF isolates with significant inhibition of pyocyanin, 2-alkyl-4(1H)-quinolones production.Pseudomonas aeruginosa is one of the top priority pathogens that requires immediate attention according to the World Health Organisation (WHO). Due to the alarming shortage of novel antimicrobials, targeting quorum sensing (QS), a bacterial cell to cell signaling system controlling virulence, has emerged as a promising approach as an antibiotic adjuvant therapy. Interference with the pqs system, one of three QS systems in P. aeruginosa, results in reduction of bacterial virulence gene expression and biofilm maturation. Herein, we report a hit to lead process to fine-tune the potency of our previously reported inhibitor 1 (IC50 3.2 μM in P. aeruginosa PAO1-L), which led to the discovery of 2-(4-(3-((6-chloro-1-isopropyl-1H-benzo[d]imidazol-2-yl)amino)-2-hydroxypropoxy)phenyl)acetonitrile (6f) as a potent PqsR antagonist. Compound 6f inhibited the PqsR-controlled PpqsA-lux transcriptional reporter fusion in P. aeruginosa at low submicromolar concentrations. Moreover, 6f showed improved efficacy against P. aeruginosa CF isolates with significant inhibition of pyocyanin, 2-alkyl-4(1H)-quinolones production.
ISSN:1520-4804
1520-4804
DOI:10.1021/acs.jmedchem.3c00973