Loading…
Extracellular Vesicles as Liquid Biopsy Biomarkers across the Cancer Journey: From Early Detection to Recurrence
Abstract Background Cancer is a dynamic process and thus requires highly informative and reliable biomarkers to help guide patient care. Liquid-based biopsies have emerged as a clinical tool for tracking cancer dynamics. Extracellular vesicles (EVs), lipid bilayer delimited particles secreted by cel...
Saved in:
Published in: | Clinical chemistry (Baltimore, Md.) Md.), 2024-01, Vol.70 (1), p.206-219 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
Cancer is a dynamic process and thus requires highly informative and reliable biomarkers to help guide patient care. Liquid-based biopsies have emerged as a clinical tool for tracking cancer dynamics. Extracellular vesicles (EVs), lipid bilayer delimited particles secreted by cells, are a new class of liquid-based biomarkers. EVs are rich in selectively sorted biomolecule cargos, which provide a spatiotemporal fingerprint of the cell of origin, including cancer cells.
Content
This review summarizes the performance characteristics of EV-based biomarkers at different stages of cancer progression, from early malignancy to recurrence, while emphasizing their potential as diagnostic, prognostic, and screening biomarkers. We discuss the characteristics of effective biomarkers, consider challenges associated with the EV biomarker field, and report guidelines based on the biomarker discovery pipeline.
Summary
Basic science and clinical trial studies have shown the potential of EVs as precision-based biomarkers for tracking cancer status, with promising applications for diagnosing disease, predicting response to therapy, and tracking disease burden. The multi-analyte cargos of EVs enhance the performance characteristics of biomarkers. Recent technological advances in ultrasensitive detection of EVs have shown promise with high specificity and sensitivity to differentiate early-cancer cases vs healthy individuals, potentially outperforming current gold-standard imaging-based cancer diagnosis. Ultimately, clinical translation will be dictated by how these new EV biomarker-based platforms perform in larger sample cohorts. Applying ultrasensitive, scalable, and reproducible EV detection platforms with better design considerations based upon the biomarker discovery pipeline should guide the field towards clinically useful liquid biopsy biomarkers. |
---|---|
ISSN: | 0009-9147 1530-8561 |
DOI: | 10.1093/clinchem/hvad176 |