Loading…

Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection

Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2024-01, Vol.PP, p.1-14
Main Authors: Qu, Jiahui, Dong, Wenqian, Yang, Yufei, Zhang, Tongzhen, Li, Yunsong, Du, Qian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume PP
creator Qu, Jiahui
Dong, Wenqian
Yang, Yufei
Zhang, Tongzhen
Li, Yunsong
Du, Qian
description Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled data is extremely expensive and time-consuming. It is intuitive to learn changes from the scene with sufficient labeled data and adapting them into an unlabeled new scene. However, the nonnegligible domain shift between different scenes leads to inevitable performance degradation. In this article, a cycle-refined multidecision joint alignment network (CMJAN) is proposed for unsupervised domain adaptive hyperspectral change detection, which realizes progressive alignment of the data distributions between the source and target domains with cycle-refined high-confidence labeled samples. There are two key characteristics: 1) progressively mitigate the distribution discrepancy to learn domain-invariant difference feature representation and 2) update the high-confidence training samples of the target domain in a cycle manner. The benefit is that the domain shift between the source and target domains is progressively alleviated to promote change detection performance on the target domain in an unsupervised manner. Experimental results on different datasets demonstrate that the proposed method can achieve better performance than the state-of-the-art change detection methods.
doi_str_mv 10.1109/TNNLS.2023.3347301
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2910195788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10380223</ieee_id><sourcerecordid>2910195788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-3d94bc3b275c7536ae4842066fdec767fd53ad21c8dfe1921b4dfaa7a0704fef3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoKtU_ICJZupmax8xkZlnqo0qtoC24G9LkRqPzMpmp9N8bbRWzybnJOYfLh9AJJUNKSX4xn82mT0NGGB9yHgtO6A46ZDRlEeNZtvunxfMBOvb-jYSTkiSN8310wDMqSJqIQ-THa1VC9AjG1qDxfV92VoOy3jY1vmts3eFRaV_qCoKaQffZuHdsGocXte9bcCvrQ-yyqaSt8UjLtrMrwJN1-PItqM7JEo9fZf0C-BK68BB6j9CekaWH4-09QIvrq_l4Ek0fbm7Ho2mkmEi6iOs8Xiq-DIMSCU8lxFnMSJqasKBIhdEJl5pRlWkDNGd0GWsjpZBEkNiA4QN0vultXfPRg--KynoFZSlraHpfsJwSmiciy4KVbazKNd47MEXrbCXduqCk-OZd_PAuvnkXW94hdLbt75cV6L_IL91gON0YLAD8a-QZYYzzLyS6huI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910195788</pqid></control><display><type>article</type><title>Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Qu, Jiahui ; Dong, Wenqian ; Yang, Yufei ; Zhang, Tongzhen ; Li, Yunsong ; Du, Qian</creator><creatorcontrib>Qu, Jiahui ; Dong, Wenqian ; Yang, Yufei ; Zhang, Tongzhen ; Li, Yunsong ; Du, Qian</creatorcontrib><description>Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled data is extremely expensive and time-consuming. It is intuitive to learn changes from the scene with sufficient labeled data and adapting them into an unlabeled new scene. However, the nonnegligible domain shift between different scenes leads to inevitable performance degradation. In this article, a cycle-refined multidecision joint alignment network (CMJAN) is proposed for unsupervised domain adaptive hyperspectral change detection, which realizes progressive alignment of the data distributions between the source and target domains with cycle-refined high-confidence labeled samples. There are two key characteristics: 1) progressively mitigate the distribution discrepancy to learn domain-invariant difference feature representation and 2) update the high-confidence training samples of the target domain in a cycle manner. The benefit is that the domain shift between the source and target domains is progressively alleviated to promote change detection performance on the target domain in an unsupervised manner. Experimental results on different datasets demonstrate that the proposed method can achieve better performance than the state-of-the-art change detection methods.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3347301</identifier><identifier>PMID: 38170657</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adaptive systems ; Change detection ; Feature extraction ; hyperspectral image (HSI) ; Hyperspectral imaging ; progressive alignment ; Reliability ; Task analysis ; Training ; unsupervised domain adaptive</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-01, Vol.PP, p.1-14</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1335-038X ; 0000-0002-0234-6270 ; 0000-0002-0692-9676 ; 0000-0002-3925-2884 ; 0000-0001-8354-7500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10380223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38170657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qu, Jiahui</creatorcontrib><creatorcontrib>Dong, Wenqian</creatorcontrib><creatorcontrib>Yang, Yufei</creatorcontrib><creatorcontrib>Zhang, Tongzhen</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><title>Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled data is extremely expensive and time-consuming. It is intuitive to learn changes from the scene with sufficient labeled data and adapting them into an unlabeled new scene. However, the nonnegligible domain shift between different scenes leads to inevitable performance degradation. In this article, a cycle-refined multidecision joint alignment network (CMJAN) is proposed for unsupervised domain adaptive hyperspectral change detection, which realizes progressive alignment of the data distributions between the source and target domains with cycle-refined high-confidence labeled samples. There are two key characteristics: 1) progressively mitigate the distribution discrepancy to learn domain-invariant difference feature representation and 2) update the high-confidence training samples of the target domain in a cycle manner. The benefit is that the domain shift between the source and target domains is progressively alleviated to promote change detection performance on the target domain in an unsupervised manner. Experimental results on different datasets demonstrate that the proposed method can achieve better performance than the state-of-the-art change detection methods.</description><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>Change detection</subject><subject>Feature extraction</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>progressive alignment</subject><subject>Reliability</subject><subject>Task analysis</subject><subject>Training</subject><subject>unsupervised domain adaptive</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoKtU_ICJZupmax8xkZlnqo0qtoC24G9LkRqPzMpmp9N8bbRWzybnJOYfLh9AJJUNKSX4xn82mT0NGGB9yHgtO6A46ZDRlEeNZtvunxfMBOvb-jYSTkiSN8310wDMqSJqIQ-THa1VC9AjG1qDxfV92VoOy3jY1vmts3eFRaV_qCoKaQffZuHdsGocXte9bcCvrQ-yyqaSt8UjLtrMrwJN1-PItqM7JEo9fZf0C-BK68BB6j9CekaWH4-09QIvrq_l4Ek0fbm7Ho2mkmEi6iOs8Xiq-DIMSCU8lxFnMSJqasKBIhdEJl5pRlWkDNGd0GWsjpZBEkNiA4QN0vultXfPRg--KynoFZSlraHpfsJwSmiciy4KVbazKNd47MEXrbCXduqCk-OZd_PAuvnkXW94hdLbt75cV6L_IL91gON0YLAD8a-QZYYzzLyS6huI</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Qu, Jiahui</creator><creator>Dong, Wenqian</creator><creator>Yang, Yufei</creator><creator>Zhang, Tongzhen</creator><creator>Li, Yunsong</creator><creator>Du, Qian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1335-038X</orcidid><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid><orcidid>https://orcid.org/0000-0002-0692-9676</orcidid><orcidid>https://orcid.org/0000-0002-3925-2884</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid></search><sort><creationdate>20240103</creationdate><title>Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection</title><author>Qu, Jiahui ; Dong, Wenqian ; Yang, Yufei ; Zhang, Tongzhen ; Li, Yunsong ; Du, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-3d94bc3b275c7536ae4842066fdec767fd53ad21c8dfe1921b4dfaa7a0704fef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>Change detection</topic><topic>Feature extraction</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>progressive alignment</topic><topic>Reliability</topic><topic>Task analysis</topic><topic>Training</topic><topic>unsupervised domain adaptive</topic><toplevel>online_resources</toplevel><creatorcontrib>Qu, Jiahui</creatorcontrib><creatorcontrib>Dong, Wenqian</creatorcontrib><creatorcontrib>Yang, Yufei</creatorcontrib><creatorcontrib>Zhang, Tongzhen</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Jiahui</au><au>Dong, Wenqian</au><au>Yang, Yufei</au><au>Zhang, Tongzhen</au><au>Li, Yunsong</au><au>Du, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-01-03</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled data is extremely expensive and time-consuming. It is intuitive to learn changes from the scene with sufficient labeled data and adapting them into an unlabeled new scene. However, the nonnegligible domain shift between different scenes leads to inevitable performance degradation. In this article, a cycle-refined multidecision joint alignment network (CMJAN) is proposed for unsupervised domain adaptive hyperspectral change detection, which realizes progressive alignment of the data distributions between the source and target domains with cycle-refined high-confidence labeled samples. There are two key characteristics: 1) progressively mitigate the distribution discrepancy to learn domain-invariant difference feature representation and 2) update the high-confidence training samples of the target domain in a cycle manner. The benefit is that the domain shift between the source and target domains is progressively alleviated to promote change detection performance on the target domain in an unsupervised manner. Experimental results on different datasets demonstrate that the proposed method can achieve better performance than the state-of-the-art change detection methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38170657</pmid><doi>10.1109/TNNLS.2023.3347301</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1335-038X</orcidid><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid><orcidid>https://orcid.org/0000-0002-0692-9676</orcidid><orcidid>https://orcid.org/0000-0002-3925-2884</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-01, Vol.PP, p.1-14
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2910195788
source IEEE Electronic Library (IEL) Journals
subjects Adaptation models
Adaptive systems
Change detection
Feature extraction
hyperspectral image (HSI)
Hyperspectral imaging
progressive alignment
Reliability
Task analysis
Training
unsupervised domain adaptive
title Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycle-Refined%20Multidecision%20Joint%20Alignment%20Network%20for%20Unsupervised%20Domain%20Adaptive%20Hyperspectral%20Change%20Detection&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Qu,%20Jiahui&rft.date=2024-01-03&rft.volume=PP&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3347301&rft_dat=%3Cproquest_pubme%3E2910195788%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-3d94bc3b275c7536ae4842066fdec767fd53ad21c8dfe1921b4dfaa7a0704fef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2910195788&rft_id=info:pmid/38170657&rft_ieee_id=10380223&rfr_iscdi=true