Loading…
Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection
Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2024-01, Vol.PP, p.1-14 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | PP |
creator | Qu, Jiahui Dong, Wenqian Yang, Yufei Zhang, Tongzhen Li, Yunsong Du, Qian |
description | Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled data is extremely expensive and time-consuming. It is intuitive to learn changes from the scene with sufficient labeled data and adapting them into an unlabeled new scene. However, the nonnegligible domain shift between different scenes leads to inevitable performance degradation. In this article, a cycle-refined multidecision joint alignment network (CMJAN) is proposed for unsupervised domain adaptive hyperspectral change detection, which realizes progressive alignment of the data distributions between the source and target domains with cycle-refined high-confidence labeled samples. There are two key characteristics: 1) progressively mitigate the distribution discrepancy to learn domain-invariant difference feature representation and 2) update the high-confidence training samples of the target domain in a cycle manner. The benefit is that the domain shift between the source and target domains is progressively alleviated to promote change detection performance on the target domain in an unsupervised manner. Experimental results on different datasets demonstrate that the proposed method can achieve better performance than the state-of-the-art change detection methods. |
doi_str_mv | 10.1109/TNNLS.2023.3347301 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2910195788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10380223</ieee_id><sourcerecordid>2910195788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-3d94bc3b275c7536ae4842066fdec767fd53ad21c8dfe1921b4dfaa7a0704fef3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoKtU_ICJZupmax8xkZlnqo0qtoC24G9LkRqPzMpmp9N8bbRWzybnJOYfLh9AJJUNKSX4xn82mT0NGGB9yHgtO6A46ZDRlEeNZtvunxfMBOvb-jYSTkiSN8310wDMqSJqIQ-THa1VC9AjG1qDxfV92VoOy3jY1vmts3eFRaV_qCoKaQffZuHdsGocXte9bcCvrQ-yyqaSt8UjLtrMrwJN1-PItqM7JEo9fZf0C-BK68BB6j9CekaWH4-09QIvrq_l4Ek0fbm7Ho2mkmEi6iOs8Xiq-DIMSCU8lxFnMSJqasKBIhdEJl5pRlWkDNGd0GWsjpZBEkNiA4QN0vultXfPRg--KynoFZSlraHpfsJwSmiciy4KVbazKNd47MEXrbCXduqCk-OZd_PAuvnkXW94hdLbt75cV6L_IL91gON0YLAD8a-QZYYzzLyS6huI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910195788</pqid></control><display><type>article</type><title>Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Qu, Jiahui ; Dong, Wenqian ; Yang, Yufei ; Zhang, Tongzhen ; Li, Yunsong ; Du, Qian</creator><creatorcontrib>Qu, Jiahui ; Dong, Wenqian ; Yang, Yufei ; Zhang, Tongzhen ; Li, Yunsong ; Du, Qian</creatorcontrib><description>Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled data is extremely expensive and time-consuming. It is intuitive to learn changes from the scene with sufficient labeled data and adapting them into an unlabeled new scene. However, the nonnegligible domain shift between different scenes leads to inevitable performance degradation. In this article, a cycle-refined multidecision joint alignment network (CMJAN) is proposed for unsupervised domain adaptive hyperspectral change detection, which realizes progressive alignment of the data distributions between the source and target domains with cycle-refined high-confidence labeled samples. There are two key characteristics: 1) progressively mitigate the distribution discrepancy to learn domain-invariant difference feature representation and 2) update the high-confidence training samples of the target domain in a cycle manner. The benefit is that the domain shift between the source and target domains is progressively alleviated to promote change detection performance on the target domain in an unsupervised manner. Experimental results on different datasets demonstrate that the proposed method can achieve better performance than the state-of-the-art change detection methods.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3347301</identifier><identifier>PMID: 38170657</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adaptive systems ; Change detection ; Feature extraction ; hyperspectral image (HSI) ; Hyperspectral imaging ; progressive alignment ; Reliability ; Task analysis ; Training ; unsupervised domain adaptive</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-01, Vol.PP, p.1-14</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1335-038X ; 0000-0002-0234-6270 ; 0000-0002-0692-9676 ; 0000-0002-3925-2884 ; 0000-0001-8354-7500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10380223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38170657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qu, Jiahui</creatorcontrib><creatorcontrib>Dong, Wenqian</creatorcontrib><creatorcontrib>Yang, Yufei</creatorcontrib><creatorcontrib>Zhang, Tongzhen</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><title>Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled data is extremely expensive and time-consuming. It is intuitive to learn changes from the scene with sufficient labeled data and adapting them into an unlabeled new scene. However, the nonnegligible domain shift between different scenes leads to inevitable performance degradation. In this article, a cycle-refined multidecision joint alignment network (CMJAN) is proposed for unsupervised domain adaptive hyperspectral change detection, which realizes progressive alignment of the data distributions between the source and target domains with cycle-refined high-confidence labeled samples. There are two key characteristics: 1) progressively mitigate the distribution discrepancy to learn domain-invariant difference feature representation and 2) update the high-confidence training samples of the target domain in a cycle manner. The benefit is that the domain shift between the source and target domains is progressively alleviated to promote change detection performance on the target domain in an unsupervised manner. Experimental results on different datasets demonstrate that the proposed method can achieve better performance than the state-of-the-art change detection methods.</description><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>Change detection</subject><subject>Feature extraction</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>progressive alignment</subject><subject>Reliability</subject><subject>Task analysis</subject><subject>Training</subject><subject>unsupervised domain adaptive</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoKtU_ICJZupmax8xkZlnqo0qtoC24G9LkRqPzMpmp9N8bbRWzybnJOYfLh9AJJUNKSX4xn82mT0NGGB9yHgtO6A46ZDRlEeNZtvunxfMBOvb-jYSTkiSN8310wDMqSJqIQ-THa1VC9AjG1qDxfV92VoOy3jY1vmts3eFRaV_qCoKaQffZuHdsGocXte9bcCvrQ-yyqaSt8UjLtrMrwJN1-PItqM7JEo9fZf0C-BK68BB6j9CekaWH4-09QIvrq_l4Ek0fbm7Ho2mkmEi6iOs8Xiq-DIMSCU8lxFnMSJqasKBIhdEJl5pRlWkDNGd0GWsjpZBEkNiA4QN0vultXfPRg--KynoFZSlraHpfsJwSmiciy4KVbazKNd47MEXrbCXduqCk-OZd_PAuvnkXW94hdLbt75cV6L_IL91gON0YLAD8a-QZYYzzLyS6huI</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Qu, Jiahui</creator><creator>Dong, Wenqian</creator><creator>Yang, Yufei</creator><creator>Zhang, Tongzhen</creator><creator>Li, Yunsong</creator><creator>Du, Qian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1335-038X</orcidid><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid><orcidid>https://orcid.org/0000-0002-0692-9676</orcidid><orcidid>https://orcid.org/0000-0002-3925-2884</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid></search><sort><creationdate>20240103</creationdate><title>Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection</title><author>Qu, Jiahui ; Dong, Wenqian ; Yang, Yufei ; Zhang, Tongzhen ; Li, Yunsong ; Du, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-3d94bc3b275c7536ae4842066fdec767fd53ad21c8dfe1921b4dfaa7a0704fef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>Change detection</topic><topic>Feature extraction</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>progressive alignment</topic><topic>Reliability</topic><topic>Task analysis</topic><topic>Training</topic><topic>unsupervised domain adaptive</topic><toplevel>online_resources</toplevel><creatorcontrib>Qu, Jiahui</creatorcontrib><creatorcontrib>Dong, Wenqian</creatorcontrib><creatorcontrib>Yang, Yufei</creatorcontrib><creatorcontrib>Zhang, Tongzhen</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Jiahui</au><au>Dong, Wenqian</au><au>Yang, Yufei</au><au>Zhang, Tongzhen</au><au>Li, Yunsong</au><au>Du, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-01-03</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled data is extremely expensive and time-consuming. It is intuitive to learn changes from the scene with sufficient labeled data and adapting them into an unlabeled new scene. However, the nonnegligible domain shift between different scenes leads to inevitable performance degradation. In this article, a cycle-refined multidecision joint alignment network (CMJAN) is proposed for unsupervised domain adaptive hyperspectral change detection, which realizes progressive alignment of the data distributions between the source and target domains with cycle-refined high-confidence labeled samples. There are two key characteristics: 1) progressively mitigate the distribution discrepancy to learn domain-invariant difference feature representation and 2) update the high-confidence training samples of the target domain in a cycle manner. The benefit is that the domain shift between the source and target domains is progressively alleviated to promote change detection performance on the target domain in an unsupervised manner. Experimental results on different datasets demonstrate that the proposed method can achieve better performance than the state-of-the-art change detection methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38170657</pmid><doi>10.1109/TNNLS.2023.3347301</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1335-038X</orcidid><orcidid>https://orcid.org/0000-0002-0234-6270</orcidid><orcidid>https://orcid.org/0000-0002-0692-9676</orcidid><orcidid>https://orcid.org/0000-0002-3925-2884</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-01, Vol.PP, p.1-14 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2910195788 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models Adaptive systems Change detection Feature extraction hyperspectral image (HSI) Hyperspectral imaging progressive alignment Reliability Task analysis Training unsupervised domain adaptive |
title | Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycle-Refined%20Multidecision%20Joint%20Alignment%20Network%20for%20Unsupervised%20Domain%20Adaptive%20Hyperspectral%20Change%20Detection&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Qu,%20Jiahui&rft.date=2024-01-03&rft.volume=PP&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3347301&rft_dat=%3Cproquest_pubme%3E2910195788%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-3d94bc3b275c7536ae4842066fdec767fd53ad21c8dfe1921b4dfaa7a0704fef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2910195788&rft_id=info:pmid/38170657&rft_ieee_id=10380223&rfr_iscdi=true |