Loading…
A boundary-field integral equation for analysis of cavity acoustic spectrum
The acoustic spectrum of cavities can be identified using integral equation formulations. Because of the transcendental dependence on frequency of the Green function, difficulties arise in calculating acoustic frequencies and modes of vibration when the Kirchhoff–Helmholtz boundary-integral operator...
Saved in:
Published in: | Journal of fluids and structures 2006-02, Vol.22 (2), p.261-272 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The acoustic spectrum of cavities can be identified using integral equation formulations. Because of the transcendental dependence on frequency of the Green function, difficulties arise in calculating acoustic frequencies and modes of vibration when the Kirchhoff–Helmholtz boundary-integral operator is applied. This trouble is circumvented by the present, nonstandard, integral formulation that, by using the fundamental solution of the Laplace operator, allows the identification of acoustic spectra of cavities through solution of a standard eigenvalue problem. This formulation is compared both with that based on the Kirchhoff–Helmholtz operator and with an alternative integral approach introduced in the past that, akin to the one used here, analyzes cavity acoustics in terms of an eigenvalue problem. The numerical investigation deals both with a simple box-shaped cavity and with cavities related to applications of aeronautical interest. |
---|---|
ISSN: | 0889-9746 1095-8622 |
DOI: | 10.1016/j.jfluidstructs.2005.09.002 |