Loading…
Active Property–Structure Integrated Reconfiguration of Individual Resonant Nanoparticles
Property–structure reconfigurable nanoparticles (NPs) provide additional flexibility for effectively and flexibly manipulating light at the nanoscale. This has facilitated the development of various multifunctional and high-performance nanophotonic devices. Resonant NPs based on dielectric active ma...
Saved in:
Published in: | ACS applied materials & interfaces 2024-01, Vol.16 (2), p.2836-2846 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Property–structure reconfigurable nanoparticles (NPs) provide additional flexibility for effectively and flexibly manipulating light at the nanoscale. This has facilitated the development of various multifunctional and high-performance nanophotonic devices. Resonant NPs based on dielectric active materials, especially phase change materials, are particularly promising for achieving reconfigurability. However, the on-demand control of the properties, especially the morphology, in individual dielectric resonant NP remains a significant challenge. In this study, we present an all-optical approach for one-step fabrication of Ge2Sb2Te5 (GST) hemispherical NPs, integrated active reversible phase-state switching, and morphology reshaping. Reversible optical switching is demonstrated, attributed to reversible phase-state changes, along with unidirectional modifications to their scattering intensity resulting from morphology reshaping. This novel technology allows the precise adjustment of each structural pixel without affecting the overall functionality of the switchable nanophotonic device. It is highly suitable for applications in single-pixel-addressable active optical devices, structural color displays, and information storage, among others. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c12808 |