Loading…
Purification, bioactivity and application of maltobionic acid in active films
The objective of this study was to purify sodium maltobionate using Zymomonas mobilis cells immobilized in situ on flexible polyurethane (PU) and convert it into maltobionic acid for further evaluation of bioactivity (iron chelating ability, antibacterial potential and cytoprotection) and incorporat...
Saved in:
Published in: | 3 Biotech 2024, Vol.14 (1), p.32-32, Article 32 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-37ac16ededa8e2431c4af9023e0d15c74ab5a34cce4f45522f5d226d2b6fa2af3 |
container_end_page | 32 |
container_issue | 1 |
container_start_page | 32 |
container_title | 3 Biotech |
container_volume | 14 |
creator | de Souza, Roberta Cristina da Silva, Leonardo Meirelles Buratti, Bruna Angela Carra, Sabrina Flores, Maicon Puton, Bruna Maria Rigotti, Marina Salvador, Mirian Malvessi, Eloane Moreira, Francys Kley Vieira Steffens, Clarice Valduga, Eunice Zeni, Jamile |
description | The objective of this study was to purify sodium maltobionate using
Zymomonas mobilis
cells immobilized in situ on flexible polyurethane (PU) and convert it into maltobionic acid for further evaluation of bioactivity (iron chelating ability, antibacterial potential and cytoprotection) and incorporation into films based on cassava starch, chitosan, and cellulose acetate. Sodium maltobionate exhibited a purity of 98.1% and demonstrated an iron chelating ability of approximately 50% at concentrations ranging from 15 to 20 mg mL
−1
. Maltobionic acid displayed minimal inhibitory concentrations (MIC) of 8.5, 10.5, 8.0, and 8.0 mg mL
−1
for
Salmonella enterica
serovar Choleraesuis,
Escherichia coli
,
Staphylococcus aureus
, and
Listeria monocytogenes
, respectively. Maltobionic acid did not exhibit cytotoxicity in HEK-293 cells at concentrations up to 500 µg mL
−1
. Films incorporating 7.5% maltobionic acid into cassava starch and chitosan demonstrated inhibition of microbial growth, with halo sizes ranging from 15.67 to 22.33 mm. These films had a thickness of 0.17 and 0.13 mm, water solubility of 62.68% and 78.85%, and oil solubility of 6.23% and 11.91%, respectively. The cellulose acetate film exhibited a non-uniform visual appearance due to the low solubility of maltobionic acid in acetone. Mechanical and optical properties were enhanced with the addition of maltobionic acid to chitosan and cassava films. The chitosan film with 7.5% maltobionic acid demonstrated higher tensile strength (30.3 MPa) and elongation at break (9.0%). In contrast, the cassava starch film exhibited a high elastic modulus (1.7). Overall, maltobionic acid, with its antibacterial activity, holds promise for applications in active films suitable for food packaging. |
doi_str_mv | 10.1007/s13205-023-03879-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2911842550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909668649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-37ac16ededa8e2431c4af9023e0d15c74ab5a34cce4f45522f5d226d2b6fa2af3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rLuH_AgAS8erOazTY8ifsGKHhS8hTQfkqVt1qYV9t8bt-sKHpzLDMwz78y8ABxjdIERKi4jpgTxDBGaISqKMqN7YEpwiTJeULG_q8nbBMxjXKIUHPMSo0MwoQILQTGagsfnofPOa9X70J7Dygele__p-zVUrYFqtaq3TRgcbFTdh8S0XkOlvYG-hRveQufrJh6BA6fqaOfbPAOvtzcv1_fZ4unu4fpqkWlK8j6jhdI4t8YaJSxhFGumXJleschgrgumKq4o09oyxzgnxHFDSG5IlTtFlKMzcDbqrrrwMdjYy8ZHbetatTYMUZISY8EI5yihp3_QZRi6Nl2XKFTmuchZmSgyUroLMXbWyVXnG9WtJUby2285-i3TkXLjt6Rp6GQrPVSNNbuRH3cTQEcgplb7brvf3f_IfgGHB4rO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909668649</pqid></control><display><type>article</type><title>Purification, bioactivity and application of maltobionic acid in active films</title><source>Springer Nature</source><creator>de Souza, Roberta Cristina ; da Silva, Leonardo Meirelles ; Buratti, Bruna Angela ; Carra, Sabrina ; Flores, Maicon ; Puton, Bruna Maria ; Rigotti, Marina ; Salvador, Mirian ; Malvessi, Eloane ; Moreira, Francys Kley Vieira ; Steffens, Clarice ; Valduga, Eunice ; Zeni, Jamile</creator><creatorcontrib>de Souza, Roberta Cristina ; da Silva, Leonardo Meirelles ; Buratti, Bruna Angela ; Carra, Sabrina ; Flores, Maicon ; Puton, Bruna Maria ; Rigotti, Marina ; Salvador, Mirian ; Malvessi, Eloane ; Moreira, Francys Kley Vieira ; Steffens, Clarice ; Valduga, Eunice ; Zeni, Jamile</creatorcontrib><description>The objective of this study was to purify sodium maltobionate using
Zymomonas mobilis
cells immobilized in situ on flexible polyurethane (PU) and convert it into maltobionic acid for further evaluation of bioactivity (iron chelating ability, antibacterial potential and cytoprotection) and incorporation into films based on cassava starch, chitosan, and cellulose acetate. Sodium maltobionate exhibited a purity of 98.1% and demonstrated an iron chelating ability of approximately 50% at concentrations ranging from 15 to 20 mg mL
−1
. Maltobionic acid displayed minimal inhibitory concentrations (MIC) of 8.5, 10.5, 8.0, and 8.0 mg mL
−1
for
Salmonella enterica
serovar Choleraesuis,
Escherichia coli
,
Staphylococcus aureus
, and
Listeria monocytogenes
, respectively. Maltobionic acid did not exhibit cytotoxicity in HEK-293 cells at concentrations up to 500 µg mL
−1
. Films incorporating 7.5% maltobionic acid into cassava starch and chitosan demonstrated inhibition of microbial growth, with halo sizes ranging from 15.67 to 22.33 mm. These films had a thickness of 0.17 and 0.13 mm, water solubility of 62.68% and 78.85%, and oil solubility of 6.23% and 11.91%, respectively. The cellulose acetate film exhibited a non-uniform visual appearance due to the low solubility of maltobionic acid in acetone. Mechanical and optical properties were enhanced with the addition of maltobionic acid to chitosan and cassava films. The chitosan film with 7.5% maltobionic acid demonstrated higher tensile strength (30.3 MPa) and elongation at break (9.0%). In contrast, the cassava starch film exhibited a high elastic modulus (1.7). Overall, maltobionic acid, with its antibacterial activity, holds promise for applications in active films suitable for food packaging.</description><identifier>ISSN: 2190-572X</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-023-03879-3</identifier><identifier>PMID: 38188310</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acetic acid ; Acids ; Agriculture ; Antibacterial activity ; Biocompatibility ; Bioinformatics ; Biological activity ; Biomaterials ; Biotechnology ; Cancer Research ; Cassava ; Cellulose acetate ; Chelation ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Cytotoxicity ; E coli ; Elongation ; Escherichia coli ; Food packaging ; Iron ; Listeria monocytogenes ; Mechanical properties ; Microorganisms ; Modulus of elasticity ; Optical properties ; Original Article ; Polyurethane ; Polyurethane resins ; Salmonella Choleraesuis ; Sodium ; Solubility ; Staphylococcus aureus ; Starch ; Stem Cells ; Tensile strength ; Thickness ; Zymomonas mobilis</subject><ispartof>3 Biotech, 2024, Vol.14 (1), p.32-32, Article 32</ispartof><rights>King Abdulaziz City for Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-37ac16ededa8e2431c4af9023e0d15c74ab5a34cce4f45522f5d226d2b6fa2af3</cites><orcidid>0000-0002-3726-2659 ; 0000-0002-0529-2212 ; 0009-0009-2962-4195 ; 0000-0001-6368-3177 ; 0000-0002-3970-8132 ; 0000-0002-2553-0740 ; 0009-0005-3038-5882 ; 0000-0002-7796-6853 ; 0000-0002-3588-1050 ; 0000-0003-4394-125X ; 0000-0001-8700-8483 ; 0000-0002-3512-9459 ; 0000-0001-9404-0262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38188310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Souza, Roberta Cristina</creatorcontrib><creatorcontrib>da Silva, Leonardo Meirelles</creatorcontrib><creatorcontrib>Buratti, Bruna Angela</creatorcontrib><creatorcontrib>Carra, Sabrina</creatorcontrib><creatorcontrib>Flores, Maicon</creatorcontrib><creatorcontrib>Puton, Bruna Maria</creatorcontrib><creatorcontrib>Rigotti, Marina</creatorcontrib><creatorcontrib>Salvador, Mirian</creatorcontrib><creatorcontrib>Malvessi, Eloane</creatorcontrib><creatorcontrib>Moreira, Francys Kley Vieira</creatorcontrib><creatorcontrib>Steffens, Clarice</creatorcontrib><creatorcontrib>Valduga, Eunice</creatorcontrib><creatorcontrib>Zeni, Jamile</creatorcontrib><title>Purification, bioactivity and application of maltobionic acid in active films</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>The objective of this study was to purify sodium maltobionate using
Zymomonas mobilis
cells immobilized in situ on flexible polyurethane (PU) and convert it into maltobionic acid for further evaluation of bioactivity (iron chelating ability, antibacterial potential and cytoprotection) and incorporation into films based on cassava starch, chitosan, and cellulose acetate. Sodium maltobionate exhibited a purity of 98.1% and demonstrated an iron chelating ability of approximately 50% at concentrations ranging from 15 to 20 mg mL
−1
. Maltobionic acid displayed minimal inhibitory concentrations (MIC) of 8.5, 10.5, 8.0, and 8.0 mg mL
−1
for
Salmonella enterica
serovar Choleraesuis,
Escherichia coli
,
Staphylococcus aureus
, and
Listeria monocytogenes
, respectively. Maltobionic acid did not exhibit cytotoxicity in HEK-293 cells at concentrations up to 500 µg mL
−1
. Films incorporating 7.5% maltobionic acid into cassava starch and chitosan demonstrated inhibition of microbial growth, with halo sizes ranging from 15.67 to 22.33 mm. These films had a thickness of 0.17 and 0.13 mm, water solubility of 62.68% and 78.85%, and oil solubility of 6.23% and 11.91%, respectively. The cellulose acetate film exhibited a non-uniform visual appearance due to the low solubility of maltobionic acid in acetone. Mechanical and optical properties were enhanced with the addition of maltobionic acid to chitosan and cassava films. The chitosan film with 7.5% maltobionic acid demonstrated higher tensile strength (30.3 MPa) and elongation at break (9.0%). In contrast, the cassava starch film exhibited a high elastic modulus (1.7). Overall, maltobionic acid, with its antibacterial activity, holds promise for applications in active films suitable for food packaging.</description><subject>Acetic acid</subject><subject>Acids</subject><subject>Agriculture</subject><subject>Antibacterial activity</subject><subject>Biocompatibility</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Cancer Research</subject><subject>Cassava</subject><subject>Cellulose acetate</subject><subject>Chelation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Cytotoxicity</subject><subject>E coli</subject><subject>Elongation</subject><subject>Escherichia coli</subject><subject>Food packaging</subject><subject>Iron</subject><subject>Listeria monocytogenes</subject><subject>Mechanical properties</subject><subject>Microorganisms</subject><subject>Modulus of elasticity</subject><subject>Optical properties</subject><subject>Original Article</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Salmonella Choleraesuis</subject><subject>Sodium</subject><subject>Solubility</subject><subject>Staphylococcus aureus</subject><subject>Starch</subject><subject>Stem Cells</subject><subject>Tensile strength</subject><subject>Thickness</subject><subject>Zymomonas mobilis</subject><issn>2190-572X</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo7rLuH_AgAS8erOazTY8ifsGKHhS8hTQfkqVt1qYV9t8bt-sKHpzLDMwz78y8ABxjdIERKi4jpgTxDBGaISqKMqN7YEpwiTJeULG_q8nbBMxjXKIUHPMSo0MwoQILQTGagsfnofPOa9X70J7Dygele__p-zVUrYFqtaq3TRgcbFTdh8S0XkOlvYG-hRveQufrJh6BA6fqaOfbPAOvtzcv1_fZ4unu4fpqkWlK8j6jhdI4t8YaJSxhFGumXJleschgrgumKq4o09oyxzgnxHFDSG5IlTtFlKMzcDbqrrrwMdjYy8ZHbetatTYMUZISY8EI5yihp3_QZRi6Nl2XKFTmuchZmSgyUroLMXbWyVXnG9WtJUby2285-i3TkXLjt6Rp6GQrPVSNNbuRH3cTQEcgplb7brvf3f_IfgGHB4rO</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>de Souza, Roberta Cristina</creator><creator>da Silva, Leonardo Meirelles</creator><creator>Buratti, Bruna Angela</creator><creator>Carra, Sabrina</creator><creator>Flores, Maicon</creator><creator>Puton, Bruna Maria</creator><creator>Rigotti, Marina</creator><creator>Salvador, Mirian</creator><creator>Malvessi, Eloane</creator><creator>Moreira, Francys Kley Vieira</creator><creator>Steffens, Clarice</creator><creator>Valduga, Eunice</creator><creator>Zeni, Jamile</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3726-2659</orcidid><orcidid>https://orcid.org/0000-0002-0529-2212</orcidid><orcidid>https://orcid.org/0009-0009-2962-4195</orcidid><orcidid>https://orcid.org/0000-0001-6368-3177</orcidid><orcidid>https://orcid.org/0000-0002-3970-8132</orcidid><orcidid>https://orcid.org/0000-0002-2553-0740</orcidid><orcidid>https://orcid.org/0009-0005-3038-5882</orcidid><orcidid>https://orcid.org/0000-0002-7796-6853</orcidid><orcidid>https://orcid.org/0000-0002-3588-1050</orcidid><orcidid>https://orcid.org/0000-0003-4394-125X</orcidid><orcidid>https://orcid.org/0000-0001-8700-8483</orcidid><orcidid>https://orcid.org/0000-0002-3512-9459</orcidid><orcidid>https://orcid.org/0000-0001-9404-0262</orcidid></search><sort><creationdate>2024</creationdate><title>Purification, bioactivity and application of maltobionic acid in active films</title><author>de Souza, Roberta Cristina ; da Silva, Leonardo Meirelles ; Buratti, Bruna Angela ; Carra, Sabrina ; Flores, Maicon ; Puton, Bruna Maria ; Rigotti, Marina ; Salvador, Mirian ; Malvessi, Eloane ; Moreira, Francys Kley Vieira ; Steffens, Clarice ; Valduga, Eunice ; Zeni, Jamile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-37ac16ededa8e2431c4af9023e0d15c74ab5a34cce4f45522f5d226d2b6fa2af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic acid</topic><topic>Acids</topic><topic>Agriculture</topic><topic>Antibacterial activity</topic><topic>Biocompatibility</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Cancer Research</topic><topic>Cassava</topic><topic>Cellulose acetate</topic><topic>Chelation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Cytotoxicity</topic><topic>E coli</topic><topic>Elongation</topic><topic>Escherichia coli</topic><topic>Food packaging</topic><topic>Iron</topic><topic>Listeria monocytogenes</topic><topic>Mechanical properties</topic><topic>Microorganisms</topic><topic>Modulus of elasticity</topic><topic>Optical properties</topic><topic>Original Article</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Salmonella Choleraesuis</topic><topic>Sodium</topic><topic>Solubility</topic><topic>Staphylococcus aureus</topic><topic>Starch</topic><topic>Stem Cells</topic><topic>Tensile strength</topic><topic>Thickness</topic><topic>Zymomonas mobilis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Roberta Cristina</creatorcontrib><creatorcontrib>da Silva, Leonardo Meirelles</creatorcontrib><creatorcontrib>Buratti, Bruna Angela</creatorcontrib><creatorcontrib>Carra, Sabrina</creatorcontrib><creatorcontrib>Flores, Maicon</creatorcontrib><creatorcontrib>Puton, Bruna Maria</creatorcontrib><creatorcontrib>Rigotti, Marina</creatorcontrib><creatorcontrib>Salvador, Mirian</creatorcontrib><creatorcontrib>Malvessi, Eloane</creatorcontrib><creatorcontrib>Moreira, Francys Kley Vieira</creatorcontrib><creatorcontrib>Steffens, Clarice</creatorcontrib><creatorcontrib>Valduga, Eunice</creatorcontrib><creatorcontrib>Zeni, Jamile</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Roberta Cristina</au><au>da Silva, Leonardo Meirelles</au><au>Buratti, Bruna Angela</au><au>Carra, Sabrina</au><au>Flores, Maicon</au><au>Puton, Bruna Maria</au><au>Rigotti, Marina</au><au>Salvador, Mirian</au><au>Malvessi, Eloane</au><au>Moreira, Francys Kley Vieira</au><au>Steffens, Clarice</au><au>Valduga, Eunice</au><au>Zeni, Jamile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Purification, bioactivity and application of maltobionic acid in active films</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2024</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>32</spage><epage>32</epage><pages>32-32</pages><artnum>32</artnum><issn>2190-572X</issn><eissn>2190-5738</eissn><abstract>The objective of this study was to purify sodium maltobionate using
Zymomonas mobilis
cells immobilized in situ on flexible polyurethane (PU) and convert it into maltobionic acid for further evaluation of bioactivity (iron chelating ability, antibacterial potential and cytoprotection) and incorporation into films based on cassava starch, chitosan, and cellulose acetate. Sodium maltobionate exhibited a purity of 98.1% and demonstrated an iron chelating ability of approximately 50% at concentrations ranging from 15 to 20 mg mL
−1
. Maltobionic acid displayed minimal inhibitory concentrations (MIC) of 8.5, 10.5, 8.0, and 8.0 mg mL
−1
for
Salmonella enterica
serovar Choleraesuis,
Escherichia coli
,
Staphylococcus aureus
, and
Listeria monocytogenes
, respectively. Maltobionic acid did not exhibit cytotoxicity in HEK-293 cells at concentrations up to 500 µg mL
−1
. Films incorporating 7.5% maltobionic acid into cassava starch and chitosan demonstrated inhibition of microbial growth, with halo sizes ranging from 15.67 to 22.33 mm. These films had a thickness of 0.17 and 0.13 mm, water solubility of 62.68% and 78.85%, and oil solubility of 6.23% and 11.91%, respectively. The cellulose acetate film exhibited a non-uniform visual appearance due to the low solubility of maltobionic acid in acetone. Mechanical and optical properties were enhanced with the addition of maltobionic acid to chitosan and cassava films. The chitosan film with 7.5% maltobionic acid demonstrated higher tensile strength (30.3 MPa) and elongation at break (9.0%). In contrast, the cassava starch film exhibited a high elastic modulus (1.7). Overall, maltobionic acid, with its antibacterial activity, holds promise for applications in active films suitable for food packaging.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38188310</pmid><doi>10.1007/s13205-023-03879-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3726-2659</orcidid><orcidid>https://orcid.org/0000-0002-0529-2212</orcidid><orcidid>https://orcid.org/0009-0009-2962-4195</orcidid><orcidid>https://orcid.org/0000-0001-6368-3177</orcidid><orcidid>https://orcid.org/0000-0002-3970-8132</orcidid><orcidid>https://orcid.org/0000-0002-2553-0740</orcidid><orcidid>https://orcid.org/0009-0005-3038-5882</orcidid><orcidid>https://orcid.org/0000-0002-7796-6853</orcidid><orcidid>https://orcid.org/0000-0002-3588-1050</orcidid><orcidid>https://orcid.org/0000-0003-4394-125X</orcidid><orcidid>https://orcid.org/0000-0001-8700-8483</orcidid><orcidid>https://orcid.org/0000-0002-3512-9459</orcidid><orcidid>https://orcid.org/0000-0001-9404-0262</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-572X |
ispartof | 3 Biotech, 2024, Vol.14 (1), p.32-32, Article 32 |
issn | 2190-572X 2190-5738 |
language | eng |
recordid | cdi_proquest_miscellaneous_2911842550 |
source | Springer Nature |
subjects | Acetic acid Acids Agriculture Antibacterial activity Biocompatibility Bioinformatics Biological activity Biomaterials Biotechnology Cancer Research Cassava Cellulose acetate Chelation Chemistry Chemistry and Materials Science Chitosan Cytotoxicity E coli Elongation Escherichia coli Food packaging Iron Listeria monocytogenes Mechanical properties Microorganisms Modulus of elasticity Optical properties Original Article Polyurethane Polyurethane resins Salmonella Choleraesuis Sodium Solubility Staphylococcus aureus Starch Stem Cells Tensile strength Thickness Zymomonas mobilis |
title | Purification, bioactivity and application of maltobionic acid in active films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Purification,%20bioactivity%20and%20application%20of%20maltobionic%20acid%20in%20active%20films&rft.jtitle=3%20Biotech&rft.au=de%20Souza,%20Roberta%20Cristina&rft.date=2024&rft.volume=14&rft.issue=1&rft.spage=32&rft.epage=32&rft.pages=32-32&rft.artnum=32&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-023-03879-3&rft_dat=%3Cproquest_cross%3E2909668649%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-37ac16ededa8e2431c4af9023e0d15c74ab5a34cce4f45522f5d226d2b6fa2af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909668649&rft_id=info:pmid/38188310&rfr_iscdi=true |