Loading…
Enzymatically modified isoquercitrin and its protective effects against photoaging: In-vitro and clinical studies
This research examines the anti-aging potential of the flavonoid derivative of isoquercitrin known as enzymatically modified isoquercitrin (EMIQ). Initial HPLC analyses showed that EMIQ used in the study contained 1-12 glucosides and 10.7% pentahydroxyflavonoids, promising potent antioxidant propert...
Saved in:
Published in: | Photochemistry and photobiology 2024-09, Vol.100 (5), p.1475-1488 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research examines the anti-aging potential of the flavonoid derivative of isoquercitrin known as enzymatically modified isoquercitrin (EMIQ). Initial HPLC analyses showed that EMIQ used in the study contained 1-12 glucosides and 10.7% pentahydroxyflavonoids, promising potent antioxidant properties. In subsequent in-vitro studies with UVA-exposed human dermal fibroblasts (HDFa), EMIQ demonstrated protective properties by reducing collagen damage. It modulated both the TGFβ/Smad pathway and the MMP1 pathway, contributing to collagen preservation. This protective effect was further confirmed using the T-Skin™ model, a reconstructed full-thickness human skin model, which illustrated that EMIQ could defend the physiological structures of both the epidermis and dermis against UV radiation. A 28-day clinical trial with 30 volunteers aged 31-55 years highlighted EMIQ's effectiveness. Participants using EMIQ-containing Essence displayed reduced facial trans-epidermal water loss and skin roughness, alongside improved skin elasticity. This study emphasizes EMIQ's potential as an anti-photoaging ingredient in cosmetics, warranting further research. The findings pave the way for developing innovative skincare products addressing photoaging effects. |
---|---|
ISSN: | 0031-8655 1751-1097 1751-1097 |
DOI: | 10.1111/php.13891 |